
2214
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

PAPER

A Tool Platform Using an XML Representation of Source Code
Information

Katsuhisa MARUYAMA†a) and Shinichiro YAMAMOTO††, Members

SUMMARY Recent IDEs have become more extensible tool platforms
but do not concern themselves with how other tools running on them collab-
orate with each other. They compel developers to use proprietary represen-
tations or the classical abstract syntax tree (AST) to build source code tools.
Although these representations contain sufficient information, they are nei-
ther portable nor extensible. This paper proposes a tool platform that man-
ages commonly used, fined-grained, information about Java source code by
using an XML representation. Our representation is suitable for developing
tools which browse and manipulate actual source code, since the original
code is annotated with tags based on its structure and retained within the
tags. Additionally, it exposes information resulting from global semantic
analysis, which is never provided by the typical AST. Our proposed plat-
form allows the developers to extend the representation for the purpose of
sharing or exchanging various kinds of information about the source code,
and also enables them to build new tools by using existing XML utilities.
key words: source code representation, tool platform, Java, XML, program
analysis, source code manipulation tools

1. Introduction

Object-oriented software is hard to develop without inte-
grated development environments (IDEs) since it consists
of many classes and contains various kinds of relationship
between them. A significant point is that a recently released
IDE is not only a collection of programming tools but also
an extensible tool platform. For example, Eclipse [1] has a
powerful plug-in mechanism for easily adding new tools to
itself and removing existing tools from itself.

By supporting the plug-in mechanism, developers (and
researchers) have a chance to build their own tools and
would want their tools to collaborate with each other. Ac-
cordingly, a tool platform must collect the detailed infor-
mation about programs being developed and then present it
in proper form that can meet developers’ diverse require-
ments. Unfortunately, conventional tool platforms store in-
formation about source code by using either proprietary rep-
resentations or the typical abstract syntax tree (AST) [2]. Of
course these representations contain sufficient information
and several powerful tool platforms such as Eclipse [1], the
DMS Software Reengineering Toolkit [3], or RECODER [4]
provide well-designed application programming interfaces
(APIs) for accessing the information.

However, the classical representations are neither

Manuscript received July 19, 2005.
†The author is with the Department of Computer Science,

Ritsumeikan University, Kusatsu-shi, 525–8577 Japan.
††The author is with the Department of Information Systems,

Aichi Prefectural University, Aichi-ken, 480–1198 Japan.
a) E-mail: maru@cs.ritsumei.ac.jp

DOI: 10.1093/ietisy/e89–d.7.2214

portable nor extensible. That is, most of the conventional
platforms do not concern themselves with how a newly built
tool stores the additional information obtained through its
execution and exchanges such information with other tools.
In addition, proprietary APIs are insufficient for building
diverse tools. The tool developers tend to create overhead
modules which are used for extracting necessary informa-
tion from the integrated representation in their respective
tools, or they might have to modify the integrated mod-
ules and date structure. To build various kinds of software
tools managing source code and make them collaboratively
work together, the tool platform should not only use a sim-
ple standard but also portable and extensible representation.
Such a representation would act as a medium for exchanging
source-code information and would allow the developers to
add individual information they define.

The authors have developed a tool platform with a
software repository that can store and provide fine-grained
information about Java source code by using extensible
markup language (XML) [5]. This paper proposes the tool
platform, which is called Sapid/XML (sophisticated APIs
for CASE tool development with an XML repository) and
the extension of XSDML (extensible software document
markup language) [6]∗. Sapid/XML converts source code
into an XSDML document using fine-grained XML repre-
sentation. Code fragments are classified by marking them
with respective tags and are structured by nesting the tags
based on the structure of the source code. Additionally,
these documents contain additional information resulting
from syntactic and semantic analysis.

Accordingly, Sapid/XML makes the source code more
portable and convenient since XSDML exposes the struc-
ture and relationship found in the source code and the for-
mat is based on XML. XML is a simple, widely used text-
based format that is used to design markup languages suit-
able for the capture and exchange of information. Many ex-
isting XML utilities can be used for examining and manip-
ulating the source code. Sapid/XML also allows developers
to extend the prepared representation although its extension
would need a simple consistency check for the document
type definition (DTD) [5]. They can define new tags and
attributes to share common information and exchange spe-
cific information. It is useful for building new software tools
to extend the prepared representation of source code with-

∗The extended version is accurately defined as XSDML level3
but we simply call it XSDML in this paper.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

MARUYAMA and YAMAMOTO: A TOOL PLATFORM USING AN XML REPRESENTATION
2215

out examining and modifying modules in the tool platform.
Here the authors have to mention that Sapid/XML does not
intend to replace existing IDEs. It shows the potential of
a tool platform using an XML representation which is an
alternative to the classical AST of source code.

We first describe existing XML representations of
object-oriented source code. Next we present an overview of
Sapid/XML and explain how Java source code is converted
to an XSDML document and how software tools access the
converted XSDML document. Then we show several soft-
ware tools running on Sapid/XML and give experimental re-
sults in respect to the performance of Sapid/XML. Finally,
we conclude with a summary.

2. XML Representations of Source Code

Several XML formats currently exist for representing
object-oriented source code. For example, GraX [7] and
GXL [8] are classified into a graph-based format. They
store information about nodes and edges of the abstract
syntax graph (ASG) [9] without reflecting the nested struc-
ture of the source code in its XML representation. On the
other hand, Harmonia [10], JavaML [11], OOML (cppML
and JavaML) [12], bison-based parser [13], XMLizer [14],
FreeTXL [15], and srcML [16], [17] directly encode actual
source code or its AST to the nested structure of their XML
representations.

These representations are all intended to exchange in-
formation about source code or display the abstract struc-
ture of the source code. They are fulfilling such purpose
since XML is a simple, extensible, widely used text-based
format. This concept is analogous to that of our used XS-
DML. However, the main purpose of Sapid/XML is to fa-
cilitate developers in building tools for supporting software
development.

Our conversion is suitable for implementing tools
which manipulate actual source code and browse it with-
out changing its appearance since white spaces (tabs and
blanks) and new lines remain. For example, a refactoring
browser or a code checker works well with our representa-
tion since most tool users do not want it to remove com-
ments or formatting characters (white spaces and new lines)
from the original source code. The highly abstract repre-
sentation such as JavaML is insufficient to implement these
software tools although its representation would be conve-
nient for making a survey of the source code or measuring
its metrics, and some tools requiring such a representation
independent to a specific programming language.

From this point of view, XSDML is closely related to
srcML although their target programming languages are dif-
ferent (Java and C++, respectively). All of the conventional
representations except srcML and XSDML never support
the representation of comments or formatting [16]. That is,
only srcML and XSDML preserve the original text of source
code containing formatting information and guarantee the
restoration of the complete original source code. More-
over, both of them have several common features: tag names

based on programmers’ knowledge (i.e., syntactic names
such as classes, methods, or fields) and the conversion that
directly inserts tags to source code as meta-data.

While XSDML is similar to srcML, there are three
main differences between them. First, XSDML provides
all fragments of source text (operators or separators, iden-
tifiers, keywords, white spaces, and new lines) with dedi-
cated tags (see Sect. 3.1). These tags allow developers or
tools to add extra white spaces and new lines that were not
contained in the original source code. The original white
spaces and new lines are always enclosed with terminal ele-
ments while extra ones are enclosed with non-terminal ele-
ments. Secondly, XSDML aggressively exploits many kinds
of attributes while very few attributes are used in srcML
(see Sect. 3.1). The verbose attributes alleviate additional
lexical analysis of the contents of elements or the time-
consuming traversal of several elements when the develop-
ers and tools obtain the properties of code fragments (e.g.,
modifiers). Finally, XSDML contains several useful links
obtained through global (and local) semantic analysis for the
whole of source code (Sect. 3.2). Some of the links are used
in GXL or JavaML but are not provided by srcML.

3. Sapid/XML Tool Platform

Sapid/XML generates XML documents represented in our
proposed XSDML from Java programs (written in Java 1.4
or earlier) and provides them for software tools. Figure 1
shows an overview of the Sapid/XML tool platform. It
mainly consists of four components: a source code converter
(a syntactic parser and a semantic analyzer), access libraries,
a Java-XML software repository, and Java wrappers. This
section explains how Java programs are converted into XS-
DML documents and what information is contained in these
documents. The section also describes the access libraries
and the Java wrappers accessing the documents.

3.1 Syntactic Parser

The original XSDML was proposed in [6]. XSDML repre-
sents the classical text-based source code as 20 non-terminal
elements and 7 terminal ones. The terminal element has
only the textual contents while the non-terminal element can
nest others. The syntactic parser directly inserts these ele-
ments into the original source code without changing the
contents of the code, that is, it only adds tags and attributes
in the original code. Each of the code fragments is delim-
ited by the tags and all the tokens (identifiers, keywords,
comments, white spaces, and new lines) of the code remain
in the textual contents of the terminal elements. The origi-
nal source code can be restored from the converted XSDML
document by removing all the tags and leaving behind the
textual contents of the terminal elements. The attributes are
used for expressing additional properties such as modifiers,
accessibility settings, fully-qualified names, and sorts of el-
ements. For example, the type (Type), statement (Stmt),
expression (Expr), and literal (literal) elements are clas-

2216
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

Fig. 1 Overview of the proposed tool platform.

1: import java.applet.*;
2: import java.awt.*;
3:
4: public class FirstApplet extends Applet {
5: public void paint(Graphics g) {
6: g.drawString("FirstApplet", 25, 50);
7: }
8: }

Fig. 2 Sample Java source code.

sified as 3, 15, 59, and 6 by the attribute sort, respectively †.
The simple source code quoted from [11] and a tree

view of XSDML document converted from it are shown in
Figs. 2 and 3††, respectively. The original code can be seen
in the textual contents of the terminal elements (e.g., the
blanks or keywords are enclosed with the <sp> or <kw>).

3.2 Semantic Analyzer

The noteworthy feature of Sapid/XML is that it reflects in-
formation based on semantic analysis in its XML represen-
tation. The semantic analyzer inserts two kinds of informa-
tion: type and reference. The type information is expressed
by the fqn attribute. For the type Graphics at line 5 in
the source code shown in Fig. 2, the following description
is generated.

<Type fqn="java.awt.Graphics" id="s813694979"

sort="Object">

<ident defid="c4"

ref="java.awt.Graphics">Graphics</ident>

</Type>

It can be easily seen that the fully-qualified name of Graph-
ics is java.awt.Graphics because of the value of fqn. The
fully-qualified name is determined based on the search path
for class and jar files, and used for obtaining the next refer-
ence information.

The reference information is classified as a local or
global link. The local link is expressed by both the id and

Fig. 3 Tree view of the XSDML document.

defid attributes like the JavaML. The defid indicates the
link of the call or access to the element the id value of which
equals to the defid value. A referenced element is always
decided since the id value must be unique within an XS-
DML document. XSDML enhances this notation to express

†See http://www.jtool.org/xsdml.html for details.
††The crude document of XSDML is hard for a human to read

but we can use various XML utilities to view it. The figure is dis-
played by the Mozilla [18].

MARUYAMA and YAMAMOTO: A TOOL PLATFORM USING AN XML REPRESENTATION
2217

global links across several XML documents by adding the
ref attribute. For example, the following description:

<Expr id="s830472195" sort="MethodCall">

<ident defid="c302" ref="java.awt.Graphics"

fqn="void">drawString</ident>

<op>(</op>..

</Expr>

indicates invocation to the method drawString the id value
of which equals to c302 in the class java.awt.Graphics. The
fqn attribute denotes the return type. The link of the field
access is represented in the same manner.

Along with the reference information, the read and/or
write attributes are added to all Expr elements correspond-
ing to the references to fields and local variables. For ex-
ample, the variable g which is a primary expression of the
method call to drawString is represented as follows:

<Expr id="s830472194" sort="VarRef"

read="yes" write="yes">

<ident defid="s805306369">g</ident>

</Expr>

The read="yes" or write="yes" means that the value
of the variable is used or changed, respectively. The
write="yes" is also added when the state of the object
indicated by the reference variable might change (i.e., the
value of any fields defined in the object might be modified).

The process of determining which method would be
called and which field would be accessed is similar to that
done when compiling source code (Sects. 15.11 and 15.12
in [19]). It is based on the apparent (or declarative) type of
a related object since an actual object is decided at run-time
and its precise type is not known at compile-time. The ap-
parent type is obtained from the value of the fqn attribute
corresponding to the primary ident or Expr element. Here
the careful readers will wonder why java.awt.Graphics has
the id attribute. Sapid/XML uses the byte code engineer-
ing library (BCEL) [20] and automatically generates sum-
mary XML documents from class (and jar) files whenever
the files are referred by the analyzed class. Moreover, it de-
termines which classes should be re-analyzed when a class
is changed, by utilizing the global link information (and spe-
cially adding the new tags Ances and FqnMap). If any an-
cestor of the specified class, any class it refers to, or itself
is modified, a new XSDML document is automatically re-
generated from it.

The type and reference (plus read/write) information is
often extracted by existing tools but is not reusable in gen-
eral. For example, most compilers lose part of the informa-
tion after generating final class files. Although some of them
store the information in the class files, its format is hard to
read because of optimization. Sapid/XML makes such in-
formation more explicit and provides it in an easy-to-use
format in order that software tools easily query and manip-
ulate source code. This is significant since such semantic
analyzer is expensive to build from scratch. Moreover, the
provided link information must be common and fundamen-
tal to all kinds of software tools although it is not enough to

build them without supplemental information.

3.3 Access Libraries and Wrappers

Every XSDML document is stored in the Java-XML repos-
itory. Tools running on Sapid/XML can request access to
the libraries to convert Java programs into XSDML doc-
uments or to retrieve some of them from the repository
with several queries. The retrieved documents can be used
through various XML utilities, (e.g., the document object
model (DOM) [21], the simple API for XML (SAX) [22],
the extensible stylesheet language (XSL) and XSL transfor-
mations (XSLT) [23], and JDOM [24]). For example, the
following Java code using DOM APIs outputs the name of
all methods existing in a Java source file of interest.

Element elem = doc.getDocumentElement();

NodeList nl = elem.getElementByTagName("Method");

for (int i = 0; i < nl.getLength(); i++) {

NodeList nl2 = nl.item(i).getChildNodes();

for (int j = 0; j < nl2.getLength(); j++) {

Node node = nl2.item(j);

if (node.getNodeName().equals("ident")) {

System.out.println(

node.getFirstChild().getNodeValue());

} } }

The doc variable indicates a document object of the
XSDML document generated from the source file.

The standard APIs (e.g., DOM and SAX) are of course
convenient for writing code independent to a specific pro-
gramming language but too primitive for most developers
when they build tools in practice. Accordingly, the develop-
ers tend to write tedious code repeatedly. To avoid this rep-
etition, Sapid/XML provides several Java wrappers which
have high-level APIs for accessing XSDML documents. In
Fig. 4, the rectangles denote the wrappers corresponding to
the XSDML elements depicted in the top of them.

The wrappers are classes that tool developers would
frequently use and allow them to easily access portions of
a DOM tree in the Java object form. For example, the code
getting a list of classes in the Java source file (indicated by
doc) is as follows:

Element elem = doc.getDocumentElement();

JavaFile jfile = new JavaFile(elem);

JavaClassList clist = jfile.getAllClasses();

In addition, the code outputting the name of all methods ex-
isting in a class is as follows:

JavaMethodList mlist = jclass.getAllMethods();

Iterator it = mlist.iterator();

while (it.hasNext()) {

JavaMethod jm = (JavaMethod)it.next();

System.out.println(jm.getName());

}

The variable jclass is an object of the JavaClass wrapper.
All wrappers are designed only to extract information from
XSDML documents and never change their contents. They
are also useful samples of writing code that accesses and
manipulates the XSDML documents.

2218
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

Fig. 4 Java wrappers for XSDML.

4. Practical Tools Using Sapid/XML

One strength of Sapid/XML is that it structures Java source
code with several tags and embeds additional information
resulting from semantic analysis in the converted XML doc-
uments. By specifying tags in querying and transformation,
portions of the code can be accessed and extracted. More-
over, Sapid/XML neither loses tokens of original source
code nor adds superfluous texts to the textual contents of ter-
minal elements when generating XSDML documents. This
feature is convenient for modifying only the part of source
code and retaining the remaining code, or marking (or high-
lighting) source code without changing its appearance. Most
source code viewers and editors do not desire tool platforms
to arbitrarily change the contents of source code (e.g., in-
dentations or the position of braces) since they have their
individual formatters.

To evaluate these benefits, we have developed the fol-
lowing tools.

• A method viewer generating a HTML document listing
the declaration of methods for each class.
• A source code browser generating a browsable code

containing hyperlinked references in HTML form.
• A CFG/PDG constructor producing a control flow

graph (CFG) [2] and a program dependence graph
(PDG) [25] for each method existing in source code.
• A cross-reference extractor collecting link information

about inverse references (e.g., callers of a method) and
relationships (e.g., method override), and producing
XML documents containing the information.
• A refactoring browser [26] restructuring existing

source code without changing its observable behavior.

Due to space limitation, we will explain only the for-

Fig. 5 Viewing the declaration of methods.

mer three tools in this paper.†

4.1 Method Viewer

The method viewer is a simple XSLT application. Fig-
ure 5 shows a web browser displaying method declarations
in source code. It was trivial to identify classes, meth-
ods, and constructors since they were marked with Class,
Method, and Ctor in the converted XSDML document, re-
spectively. Carefully looking at Fig. 5, all class (or type)
names in the method declarations were replaced with fully-
qualified ones. Displaying such information is easily per-
formed by using the value of the fqn attribute of Type ele-
ments instead of their actual names. With Sapid/XML, tools
can obtain various kinds of information about source code
through XML utilities and thus developers can build such
tools without writing much code.

4.2 Source Code Browser

The source code browser is also an XSLT application. The
stylesheet is described in Appendix. Figure 6 shows a view
of the generated HTML-based source code. This stylesheet
performs mainly two transformations. One is to enclose the
name (ident) of classes, methods, fields, local variables
with the and elements. The
@defid indicates the value of the defid attribute of ele-
ments owning the sandwiched names.

†All of these tools can be downloaded from
http://www.jtool.org.

MARUYAMA and YAMAMOTO: A TOOL PLATFORM USING AN XML REPRESENTATION
2219

Fig. 6 Viewing HTML-based source code.

The other transformation is to find references to
classes, methods, fields, and local variables, and enclose
the references with <a href="{$relpath}{$path}.html
#{@defid}"> and elements. As mentioned in
Sect. 3.2, all references in XSDML documents have the
defid attribute, the value of which indicates the target el-
ement and substitutes for @defid. Moreover, global ref-
erences (other than references to local variables) have the
ref attribute which indicates the fully-qualified name of a
class containing the target element. The $path is obtained
through the FqnMap map storing the correspondences be-
tween the fully-qualified name of a class and the name of
a file containing the class. The $relpath denotes a rela-
tive path to the top of directories storing HTML files and is
provided as a parameter of the stylesheet.

Tags except for newly added ones are removed and the
textual contents of all elements are left behind. A significant
point is that the appearance of the restored source code is the
exactly same as that of the original source code. Sapid/XML
is well suited for creating this kind of tool because it pre-
serves all tokens of the original source code in converted
XSDML documents.

4.3 CFG/PDG Constructor

The CFG and PDG (or control and data flow) are often used
for creating tools that support software development. For
example, the CFG is useful for eliminating dead code or

Fig. 7 Source code, and its CFG and PDG.

code clone, and the PDG is invaluable for debugging or test-
ing. Program slicing [27] is a famous application using the
PDG, which is widely applied to various fields. Our de-
veloped refactoring browser uses this CFG/PDG construc-
tor. The information about CFGs and PDGs can be obtained
through both XML documents and Java objects.

Figure 7 shows source code of a method written in Java,
and its CFG and PDG. The CFG consists of a set of nodes
and edges. Each node denotes a statement which is either
an assignment or a condition predicate, which is marked the
Stmt or Expr tag. Each edge represents immediate control
flow from a statement and another one. The representation
of the generated CFG is as follows:

<CFG class="Sum" method="calsum(int)">

<nodes>..

<node no="4" id="s805306373">

<def-var id="s805306373" name="sum"/></node>

<node no="5" id="s826277895">

<use-var id="s805306372" name="n"/></node>..

</nodes>

<edges>..

<edge src="5" dst="6" sort="TrueCtrlFlow"/>

<edge src="6" dst="7" sort="TrueCtrlFlow"/>

<edge src="7" dst="5" sort="TrueCtrlFlow"

loopback="yes"/>

<edge src="5" dst="8" sort="FalseCtrlFlow"/>..

</edges>

</CFG>

The src or dst attribute denotes the value of the no attribute
of a source or destination node, respectively. The sort at-
tribute is either TrueCtrlFlow (if-then), FalseCtrlFlow
(if-else), or FallThrFlow [28]. The loopback="yes"
means its edge is a back-edge for a loop. The analyzer of
the current version of Sapid/XML cannot deal with control
flow involved in exception. To alleviate this problem, a path
edge [29] which indicates control flow for exception han-
dling will be embedded.

Similar to the CFG, the PDG consists of a set of nodes
and edges. Each node corresponds to a node of the CFG
generated from the same source code. Edges denote control
and data dependences. A control dependence edge repre-

2220
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

sents a control condition on which the execution of a state-
ment depends. Data dependence edge represents flow of
data between statements, which is classified as either loop-
carried or loop-independent [30]. The representation of the
generated PDG is as follows:

<PDG class="Sum" method="calsum(int)">

<nodes>..</nodes>

<edges>..

<edge src="5" dst="6" sort="TrueCtrlDep"/>

..

<edge src="2" dst="5" sort="ParameterIn">

<var id="s805306372" name="n"/></edge>

<edge src="4" dst="6" sort="DefUseDep">

<var id="s805306373" name="sum"/></edge>

<edge src="6" dst="6" sort="DefUseDep">

<var id="s805306373" name="sum" lc="5"/></edge>

<edge src="8" dst="9" sort="ParameterOut">

<var id="s809500674" name="$calsum"/></edge>..

</edges>

</PDG>

The sort attribute equals either TrueCtrlDep (true control
dependence), FalseCtrlFlow (false control dependence),
DefUseDep (def-use data dependence), ParameterIn (def-
use data dependence related to an incoming parameter), or
ParameterOut (def-use data dependence related to an out-
going parameter). The lc attribute in a var element indi-
cates a loop-node carrying the edge enclosing the var ele-
ment.

In general, the dependency analysis of the whole pro-
gram is too expensive. Consequently, the current CFG/PDG
constructor does not further analyze the variable appearing
in the primary expression of method invocation or field ac-
cess. Such a variable is considered to be modified and thus
the created PDGs are all conservative. For example, con-
sider the following code:

int x = obj.getX();

int y = obj.getY();

The variable obj indicates an object of the class defining the
methods getX() and getY(). In this case, the CFG/PDG
constructor produces a data dependence from the first state-
ment to the second statement since the value of the variable
obj is both read and written in each statement. Precisely,
this data dependence is dispensable only if the execution of
the method getX() never changes the state of the object obj
(e.g., the method does not change the value of every field but
only returns its value).

4.4 Discussion

Each of the former two tools was completed with little
time and effort and comprised small amount of description
(about 46 LOC and 52 LOC, respectively) because we were
able to use an existing XSL processor and wrote code in a
standardized and popular language without learning propri-
etary programming interfaces. Through development of the
CFG/PDG constructor, we confirmed that Sapid/XML pro-
vides sufficient information about source code, which is not

inferior to that provided by the AST. In addition, we con-
firmed that extending the original XSDML representation
is useful for sharing and exchanging analyzed information.
In fact, one new attribute was added in order to indicate
locations of code fragments when we developed the cross
reference extractor, and one new tag and one new attribute
were used in the refactoring browser in order to express the
changes of source code.

In addition to these tools, a tool allows developers to
annotate any code fragment by using individual elements or
attributes. For example, a version control tool might desire
to attach information about the modified time to not only
each file but also each method as follows:

<Method modified="Mon Apr 4 21:11:57 JST 2005">..

</Method>

or it might assign an access permission for each method as
follows:

<Method mode="Read-only">..</Method>

Additionally, developers might want to embed a temporary
note that differs from a permanent comment into code.

<Method note="s809500673">..</Method>

..

<note defid="s809500673" expire="04/20/2005">

The name of this method was recently changed.

</note>..

In this case, the unparser must be slightly modified and a
proper editor (or viewer) displaying the textual contents of
the added tag is needed to prepare.

5. Experimental Results

The XML representation of source code in general causes
expansion of the file size and processing time because of
its portability and flexibility. To roughly evaluate perfor-
mance of Sapid/XML, we carried out simple experiments
with four programs (Notepad, Stylepad, SwingSet2, and
Java2D) packaged in the Sun Microsystems J2SDK1.4.2.

Table 1 shows the size of the original Java source files
and their converted XSDML files. The size of the converted
XML files (.java.xml) is about 10 times (10.63, 11.00,
10.48, and 12.46 times, respectively) larger than that of orig-
inal files. This is because our proposed XML representation
contains various kinds of analyzed information about the
source code. Moreover, Sapid/XML automatically gener-
ates summary XSDML documents (.class.xml) from classes
related to Java source files. These files consume much space
although they can be shared by respective programs. We do
not think that the repository size is serious because recent
computers have a large size of memory.

Table 2 shows two types of processing time. The con-
version time denotes how long does it take to convert Java
source files into XSDML documents. This time is divided
into two phases: syntactic parsing and semantic analysis.
The manipulation time was measured by using two appli-
cations. The “Counter” application traverses all elements

MARUYAMA and YAMAMOTO: A TOOL PLATFORM USING AN XML REPRESENTATION
2221

Table 1 Size of converted XSDML documents.

Java source file (.java) XSDML file (.xml)
Program

of files LOC Size [bytes] .java.xml [bytes] ratio .class.xml [bytes] Total [bytes]

Notepad 2 1,343 38,805 412,522 10.63 1,239,167 1,651,689
Stylepad 5 2,159 65,245 717,249 11.00 1,433,866 2,151,115
SwingSet2 31 8,617 294,619 3,088,867 10.48 2,193,784 5,282,651
Java2D 62 14,187 509,949 6,355,034 12.46 2,217,521 8,572,555

Table 2 Processing time for conversion and manipulation of XSDML documents.

XML file (.xml) Conversion time [s] Manipulation time [s]
Program

of files # of elements Syntactic Semantic Total Each file Counter Each file Viewer Each file

Notepad 2 20,634 5.444 22.077 27.521 13.761 0.032 0.016 2.250 1.125
Stylepad 5 35,418 9.336 28.793 38.129 7.626 0.034 0.007 4.970 0.994
SwingSet2 31 150,086 59.455 140.051 199.506 6.436 0.068 0.002 27.220 0.878
Java2D 62 308,631 88.526 480.403 568.929 9.176 0.129 0.002 54.940 0.886

(tags and attributes) and counts their numbers, which uses
the DOM processor, Xerces2 Java Parser 2.6.2 [31]. The
“Viewer” application generates a browsable source code in
HTML form. It uses the XSL processor, Xalan Java ver-
sion 2.6.0 [32] and the stylesheet described in Appendix.
The execution was performed on a computer with a Pen-
tium4 2.4 GHz CPU and a 640 MB of RAM, running Red
Hat Linux9 and Sun Microsystems J2RE1.4.2 01.

The conversion time for each Java source file is about 6
to 14 seconds and is much longer than the general compile
time. This main reason is that Sapid/XML uses XSDML
documents and an XML processor when performing global
semantic analysis. This result might not be critical to build
an application which seldom needs the conversion (e.g., a
source code viewer or a software metrics tool) but it might
be problematic to build interactive tools which need the fre-
quent re-conversion. To reduce the conversion time, we are
planning to adopt the semantic analyzer of a sophisticated
compiler or modifying an existing IDE to generate XSDML
documents.

6. Conclusion

Tool developers require more extensible and portable rep-
resentations of source code. This paper has proposed
the XSDML representation using XML and Sapid/XML
that is a tool platform for managing such representation.
Sapid/XML retains original code fragments in the converted
XSDML documents and inserts the globally analyzed infor-
mation into them. With this platform, the developers easily
build software tools that collaborate with each other.

For the platform to be truly practical, its performance
must be improved and the development of many tools are
needed. From a functional point of view, Sapid/XML can-
not replace an existing powerful IDE. Additionally, our pro-
posed XSDML representation is not perfect and should be
refined. We are planning to integrate the XSDML represen-
tation and its converter into popular IDEs (e.g., Eclipse [1]).
We have almost completed the integration of XSDML into
Eclipse, and XML-based information about Java source
code can be accessed through our provided Eclipse plug-in.

The Sapid/XML tool platform and tools running on it
can be downloaded from http://www.jtool.org.

Acknowledgments

The authors would like to thank Akinori Yonezawa, Etsuya
Shibayama, and all members who have been engaging the
Sapid project including Kiyoshi Agusa. We also thank the
members of the Institute for Software Research (ISR) at the
University of California, Irvine (UCI), who give us helpful
and valuable comments. Especially, we thank Christopher
Van der Westhuizen and Ping H. Chen of UCI for their ex-
cellent suggestions that improve this paper. This work was
partially sponsored by the Information-technology Promo-
tion Agency (IPA), Japan.

References

[1] “Eclipse,” http://www.eclipse.org/
[2] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Tech-

niques, and Tools, Addison-Wesley, 1986.
[3] Semantic Designs, Inc., “DMS software reengineering toolkit,”

http://www.semdesigns.com/Products/DMS/DMSToolkit.html
[4] “RECODER,” http://recoder.sourceforge.net/
[5] “Extensible Markup Language (XML),” http://www.w3.org/XML/
[6] H. Yoshida, S. Yamamoto, and K. Agusa, “A generic fine-

grained software repository using XML,” IPSJ Journal, vol.44, no.6,
pp.1509–1516, June 2003.

[7] J. Ebert, B. Kullbach, and A. Winter, “GraX — An interchange for-
mat for reengineering tools,” Proc. Working Conf. Reverse Engi-
neering (WCRE), pp.89–98, Oct. 1999.

[8] R.C. Holt, A. Winter, and A. Schürr, “GXL: Toward a stan-
dard exchange format,” Proc. Working Conf. Reverse Engineering
(WCRE), pp.162–171, Nov. 2000.

[9] “GXL: Graph eXchange Language,” http://www.gupro.de/GXL/
[10] M. Boshernitsan and S.L. Graham, “Designing an XML-based ex-

change format for Harmonia,” Proc. Working Conf. Reverse Engi-
neering (WCRE), pp.287–289, Nov. 2000.

[11] G.J. Badros, “JavaML: A markup language for Java source code,”
Proc. Int’l WWW Conference, May 2000.
http://www9.org/w9cdrom/index.html

[12] E. Mamas and K. Kontogiannis, “Towards portable source code rep-
resentations using XML,” Proc. Working Conf. Reverse Engineering
(WCRE), pp.172–182, Nov. 2000.

[13] J.F. Power and B.A. Malloy, “Program annotation in XML: A parse-

2222
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.7 JULY 2006

tree based approach,” Proc. Working Conf. Reverse Engineering
(WCRE), pp.190–198, Oct. 2002.

[14] G. McArthur, J. Mylopoulos, and S.K.K. Ng, “An extensible tool
for source code representation using XML,” Proc. Working Conf.
Reverse Engineering (WCRE), pp.199–208, Oct. 2002.

[15] J.R. Cordy, “Generalized selective XML markup of source code
using agile parsing,” Proc. Int’l Work. Program Comprehension
(IWPC), pp.144–153, May 2003.

[16] J.I. Maletic, M.L. Collard, and A. Marcus, “Source code files as
structured documents,” Proc. Int’l Work. Program Comprehension
(IWPC), pp.289–292, June 2002.

[17] J.I. Maletic, M. Collard, and H. Kagdi, “Leveraging XML technolo-
gies in developing program analysis tools,” Proc. Adoption-Centric
Software Engineering (ACSE), pp.80–85, May 2004.

[18] “Mozilla,” http://www.mozilla.org/
[19] J. Gosling, B. Joy, and G. Steele, The Java Language Specification,

Addison-Wesley, 1996.
[20] “Byte Code Engineering Library (BCEL),”

http://jakarta.apache.org/bcel/
[21] “Document Object Model (DOM),” http://www.w3.org/DOM/
[22] “Simple API for XML (SAX),” http://www.saxproject.org/
[23] “Extensible Stylesheet Language Family (XSL),”

http://www.w3.org/Style/XSL/
[24] “JDOM,” http://www.jdom.org/
[25] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The program depen-

dence graph and its use in optimization,” ACM Trans. Programming
Language and Systems (TOPLAS), vol.9, no.3, pp.319–349, July
1987.

[26] K. Maruyama and S. Yamamoto, “Design and implementation of an
extensible and modifiable refactoring tool,” Proc. Int’l Work. Pro-
gram Comprehension (IWPC), pp.195–204, May 2005.

[27] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng. (TSE),
vol.10, no.4, pp.352–357, July 1984.

[28] T. Ball and S.B. Horwitz, “Slicing programs with arbitrary control
flow,” Proc. Intl. Work. on Automated and Algorithmic Debugging,
LNCS 749, pp.206–222, May 1993.

[29] M.J. Harrold, J.A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S.A. Spoon, and A. Gujarathi, “Regression test selection
for Java software,” Proc. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pp.312–326, Oct. 2001.

[30] S. Horwitz, T. Ball, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. Programming Language and Sys-
tems (TOPLAS), vol.12, no.1, pp.26–60, Jan. 1990.

[31] “Xerces2 Java Parser,” http://xml.apache.org/xerces2-j/
[32] “Xalan-Java,” http://xml.apache.org/xalan-j/

Appendix: XSL Stylesheets (htmlview.xsl)

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:param name="relpath"/>

<xsl:key name="Fqn" match="FqnMap" use="@fqn"/>

<xsl:template match="/">

<html><pre><xsl:apply-templates/></pre></html>

</xsl:template>

<xsl:template match="*|@*">

<xsl:apply-templates select="*|@*|text()"/>

</xsl:template>

<xsl:template match="text()">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="Class/ident|Intf/ident|

Method/ident|Ctor/ident|

Field/Expr/ident|

Local/Expr/ident|

Param/ident" priority="1">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="Type[@sort=’Object’]/ident|

Expr[@sort=’VarRef’]/ident|

Expr[@sort=’MethodCall’]/ident|

Expr[@sort=’CtorCall’]/ident">

<xsl:choose>

<xsl:when test="@ref">

<xsl:variable name="path"

select="key(’Fqn’,@ref)/@path"/>

<xsl:if test="contains($path, ’.java’)">

<xsl:value-of select="."/>

</xsl:if>

<xsl:if test="contains($path, ’.class’)">

<xsl:value-of select="."/>

</xsl:if>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="."/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>

Katsuhisa Maruyama received the B.E.
and M.E. degrees in electrical engineering and
the Dr. degree in information science from
Waseda University, Japan, in 1991, 1993, and
1999, respectively. He is an associated pro-
fessor of the Department of Computer Sci-
ence at College of Information and Engineer-
ing, Ritsumeikan University. He was a visit-
ing researcher at Institute for Software Research
(ISR) of University of California, Irvine (UCI).
His research interests include software refactor-

ing, program analysis, software reuse, object-oriented design and program-
ming, and software development environments. He is a member of the
IEEE Computer Society, ACM, IPSJ, and JSSST.

Shinichiro Yamamoto is an associate pro-
fessor of Information Science and Technology at
Aichi Prefectural University. He received D.E.
from Nagoya University in 1995. He is inter-
ested in formal method, program verification,
and software develop environments. He is a
member of IPSJ and JSSST.

