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SUMMARY Developers often face difficulties while using APIs. API
usage patterns can aid them in using APIs efficiently, which are extracted
from source code stored in software repositories. Previous approaches have
mined repositories to extract API usage patterns by simply applying data
mining techniques to the collection of method invocations of API objects.
In these approaches, respective functional roles of invoked methods within
API objects are ignored. The functional role represents what type of pur-
pose each method actually achieves, and a method has a specific prede-
fined order of invocation in accordance with its role. Therefore, the simple
application of conventional mining techniques fails to produce API usage
patterns that are helpful for code completion. This paper proposes an im-
proved approach that extracts API usage patterns at a higher abstraction
level rather than directly mining the actual method invocations. It embraces
a multilevel sequential mining technique and uses categorization of method
invocations based on their functional roles. We have implemented a min-
ing tool and an extended Eclipse’s code completion facility with extracted
API usage patterns. Evaluation results of this tool show that our approach
improves existing code completion.
key words: sequential pattern mining, software repositories, recommenda-
tion, code completion

1. Introduction

The application programming interfaces (APIs) are widely
used in today’s software development. They make develop-
ment faster since much functionality is provided and ready
to use. Developers use APIs by instantiating their classes
and invoking the classes’ methods to achieve the desired
functionalities. Unfortunately, the developers face many dif-
ficulties while using APIs because of the increasing size and
number of APIs [1]. They need a quick way to get useful
hints when using APIs.

Recently, developers can obtain code examples from
API documentations or the Web. Besides those sources,
software repositories store source code files containing se-
ries of method invocations for APIs, which many develop-
ers have written over and over. These method invocations
can show typical ways on how they actually use APIs. The
sequence of method invocations is called API usage pat-
terns or usage patterns in short. These usage patterns rep-
resent recurring usages of API objects and are useful to as-
sist developers in using APIs effectively. Therefore, mining
method invocation sequences from repositories is significant
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and is expected to be feasible.
In the recent research trends, several mining techniques

are applied into repositories to extract usage patterns, such
as association rules [2], [3], frequent itemsets [4], frequent
subsequences [3], [5], frequent partial orders [6], and fre-
quent sub-graphs mining [7]. These techniques can produce
several usage patterns. However, they do not consider the
functional roles of invoked methods. In other words, all
methods of an object can be invoked in any orders regardless
their functional roles, whereas limited or relaxed orders ex-
ist between methods when considering functional roles. For
example, a constructor, a setter method, and a specific task
method are invoked consecutively and a finalizer method is
always invoked last. In short, there is a limited order for in-
voking them. In contrast, the orders of two setter methods
can be rearranged in most cases. That is, their order is con-
sidered to be relaxed. The functional roles represent correct
and allowable orders of method invocations. Consequently,
the simple application of the conventional techniques might
produce usage patterns that do not conform to the properties
of functional roles. A new mining technique considering
functional roles of respective methods is needed.

This paper proposes an improved approach for mining
API usage patterns specifically method invocations, which
is called CSP (categorized sequential pattern mining) here-
after. The fact that functional roles have their own typical
orders allows us to categorize methods that share similar
functional roles into a category. This categorization is ap-
plied before the mining process. It generalizes the actual
method invocations into a higher level of abstraction that is
a set of categories representing functional roles. Method in-
vocation sequences will be represented by their categorized
sequences.

Instead of performing sequential mining on the actual
method invocations extracted from repositories, we apply
the sequential mining on categorized method invocations
based on the orders of their functional roles. This brings
the obtained API patterns that would conform to practical
and typical usages of API objects. Moreover, mining at the
higher level of abstraction reveals more general API usage
patterns that are aggregations of actual method invocations.
Thus, a recommendation tool can easily share the same gen-
eral patterns although it is derived from different concrete
patterns of API usages. This facilitates implementation of
such a tool.

The main contributions of this paper include:
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• An improved approach to mine method invocations
by exploiting categorization based on their functional
roles,
• A running implementation of a categorized sequential

mining technique and an application of API usage pat-
terns to code completion, and
• Evaluation results that show the effectiveness of our

categorized sequential pattern mining in code comple-
tion.

The rest of this paper is organized as follows: Sect. 2
describes a motivating example and research questions. Sec-
tion 3 proposes a concept of categorization and its applica-
tion on a mining algorithm. Section 4 presents the design
and implementation of code completion that leverages us-
age patterns produced by CSP. Section 5 shows evaluation
on performance of our code completion. Section 6 presents
related work. Section 7 concludes with a brief summary and
remaining issues.

2. Mining API Usage Patterns

This section first describes API usage patterns CSP deals
with. Then, it presents a motivating example and research
questions the paper will answer.

2.1 API Usage Patterns

CSP focuses on APIs built based on object-oriented pro-
gramming (OOP). In the context of OOP, an API provides
specifications including methods, classes, interfaces, and
constants. They are associated with implementation that de-
livers real functionalities. Since many developers use the
same API to realize similar functionalities, repeated ways
of API usages appear in their writing of source code stored
in code repositories.

In this paper, a usage pattern of an object denotes a se-
ries of method invocations to an API the object provides in
order to accomplish a specific task. In other words, it reveals
the order of method invocations to the API object. Develop-
ers can easily refer to the usage patterns to find quick hints
on how to use certain methods of the API with respect to
their invocation order. Code completion is a typical appli-
cation of this kind of usage pattern, which accelerates code
writing and improves programming productivity.

The goal of CSP is to mine API usage patterns that are
more useful for code recommendation systems with code
completion facilities. To attain this, CSP employs sequential
pattern mining [8] instead of association rule pattern min-
ing [9] and introduces categorization of method invocations
based on their functional roles. From this point of view, CSP
is a variant of MAPO [5] and MACs [3].

Here, we must note that CSP extracts API usage pat-
terns based on abstract chains of method invocations to a
single API object. Therefore, these kinds of API usage
patterns offer little support for reusing code snippets with
convenient sizes (e.g., a method or a class as a whole) and

Fig. 1 Code snippets for sequential pattern mining.

learning for future use. On the other hand, they are eas-
ier to manage and thus can be applied to implementation of
recommendation systems that suggest code fragments with
small sizes. Especially, modern code completion systems
aggressively utilize these kinds of API usage patterns.

There are of course other API usage patterns based
on various perspectives such as inheritance relationships [2],
object instantiation [10], similarity heuristics [11], program
history [12], co-occurrences of multiple variables, control
structures, data dependencies [13], and (actual) parameters
for method invocations [14]. They alleviate their respective
difficulties while using APIs. Details of these approaches
will be explained in Sect. 6.

Another type of difficulty in using APIs is strongly re-
lated to API usability and learning [15], [16]. For exam-
ple, an API of a certain object aggressively hides interac-
tions with other objects. This requires developers to obtain
knowledge that lies behind the API. Although several prob-
lems on API usage examples without adequate documenta-
tion or sufficient abstraction have been pointed out in [17],
[18], we may leave them unsolved in the paper.

2.2 Motivating Example

To explain the differences between traditional sequential
pattern mining and its improved one, consider five code
snippet samples shown in Fig. 1, which contain respective
sequences of method invocations to the Graphics object.
For example, the code snippet Sample1 includes all of the
four method invocations in the order of 〈1, 2, 3, 4〉. The code
snippet Sample2 also includes all of them but the order of in-
vocation 1 and 2 is different from Sample1. The code snip-
pets Sample3 and Sample4 are completely the same. Sam-
ple5 includes only two of the method invocations, which
might be an unfamiliar code snippet.

With respect to four method invocations to Graphics,
six sequences whose lengths are 2 can be extracted from
these code snippets: 〈1, 2〉:1, 〈2, 3〉:1, 〈3, 4〉:4, 〈2, 1〉:1,
〈1, 3〉:3, and 〈1, 4〉:1. The number appearing on the right-
hand side of colon (:) represents the occurrence of each se-
quence. For example, the sequence 〈1, 2〉 appears once in
the code snippets. A total of instances of the sequences are
11. Therefore, the support value of 〈1, 2〉 is 1/11(≈ 0.09).
The same calculation is repeated for each of the sequences
whose lengths are 1, 2, 3, and 4. The sequences and their
respective support values are stored in sequence database.

Consider here only the sequences whose lengths are 2
as an example. In the case that the minimal support value
is 0.1, both 〈3, 4〉 and 〈1, 3〉 are extracted as sequential



AKBAR et al.: MINING API USAGE PATTERNS BY APPLYING METHOD CATEGORIZATION TO IMPROVE CODE COMPLETION
1071

patterns since their support values exceed 0.1, which are
4/11(≈ 0.36) and 3/11(≈ 0.27), respectively. Unfortu-
nately, 〈2, 3〉 is not extracted. In other words, a recommen-
dation system presents a usage example of drawString()
that follows setColor() but does not present a usage exam-
ple of drawString() that follows setFont() although both
of these usage examples might be useful. To extract 〈2, 3〉,
we could alter the minimal support value into 0.08. In this
case, every six sequence including 〈2, 3〉 are extracted. This
result might be undesirable since the extracted sequential
patterns are too many. Moreover, a sequential pattern such
as 〈1, 4〉 might be useless for many programmers. This is
a trivial example but exemplifies the difficulty in determin-
ing the proper threshold of the support value in sequential
pattern mining.

CSP alleviates this trouble. In CSP, each method in-
vocation is categorized into either C (creation), I (initializa-
tion), M (primary method), or F (finalization). In this exam-
ple, the method invocations to Graphics (1, 2, 3, and 4) are
categorized into I, I, M, and F, respectively. They are rep-
resented by I, I, M, and F. Here we could pass the definition
of these categories and a way of how method invocations are
categorized. These will be explained in Sect. 3.

In this categorization, the important point is that both
the method invocations 1 and 2 belong to I and are consid-
ered to be identical. In other words, 〈1, 2〉 can be identified
with 〈1, 3〉 after the categorization. Consequently, four cate-
gorized sequences 〈II〉:2, 〈IM〉:4, 〈IF〉:1, and 〈MF〉:4 are de-
tected. If the minimal support value is 0.1, three categorized
sequential patterns 〈II〉, 〈IM〉, and 〈MF〉 are extracted and
〈IF〉 are excluded. In other words, 〈2, 3〉 is extracted as well
as 〈1, 3〉 corresponding to 〈IM〉, but 〈1, 4〉 corresponding to
〈IF〉 is not extracted. In this case, the recommendation sys-
tem can present two usage examples of drawString() that
follows either setColor() or setFont() without presenting
a usage example of dispose() that follows setColor(). In
most actual programming processes, just a few (or no) de-
velopers emphasize the invocation order of setColor() and
setFont() before the invocation to drawString(). Whereas
the original sequential pattern mining is too sensitive for the
order of method invocations appearing in code developers
have actually written, CSP is tolerant of the actual code.

Additionally, CSP predefines possible candidates of
categorized sequences. Even if some developers wrote code
that invokes methods of an API object in the unallowable
order, CSP ignores that code. Consider, for example, that
a code snippet including a sequence 〈1, 4, 3〉 is added to
the sample set. In this case, the occurrence of 〈4, 3〉 is not
counted. Therefore, this sequence never becomes a sequen-
tial pattern and its existence does not affect the support val-
ues of other sequences. The original sequential pattern min-
ing does not behave in this manner.

2.3 Research Questions

It is hard to exactly define what sequential patterns are use-
ful in general. This is because useful or useless patterns

depend on how to use them. Therefore, this paper presumes
that mined patterns would be helpful for code completion
and demonstrates how much assistance they provide in code
completion. In other words, we will answer the following
two research questions in this paper.

RQ1 Can CSP facilitate code writing through code comple-
tion?

RQ2 Does categorization in sequential pattern mining
benefit code completion as compared with non-
categorization?

The effects of CSP will be essentially compared with
those of sequential pattern mining embedded in the conven-
tional code completion systems such as MAPO and MACs.
However, these systems do not provide a running implemen-
tation of a module that can be built in Eclipse’s code com-
pletion. Moreover, it is devilishly hard to remove the differ-
ences in the performance of code analyzers of these systems
and a system based on CSP. It would be also impossible to
enforce fair parameter regulation (tuning) for different sys-
tems. Therefore, we prepared a module implementing the
original sequential pattern mining based on GSP (general-
ized sequential patterns) [19] as well as CSP. GSP adopts
a candidate generation-and-test approach and its implemen-
tation is comparatively simple among other sequential pat-
tern mining algorithms [20]. Although MAPO and MACs
employ more efficient algorithms SPAM (sequential pat-
tern mining) [21] and PrefixSpan (prefix-projected sequen-
tial pattern mining) [22] respectively, we positively utilize
GSP since our focus in this paper is patterns resulting from
mining but not efficiency of mining algorithms. Our concern
is what sequential patterns are mined by them.

3. Mining Categorized Sequential Patterns

This section describes how CSP discovers categorized se-
quential patterns as API usage patterns. The overview of
this mining process is shown in Fig. 2.

Fig. 2 Overview of CSP.
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3.1 Categorization of Method Invocations

The categorization of CSP aims to generalize method invo-
cations into a higher-level of abstraction. The abstraction
is represented by a set of categories. Each category contains
method invocations that have similar characteristics. We use
functional roles of method invocations as characteristics. By
categorizing method invocations based on functional roles,
we can determine general patterns representing typical us-
ages of API objects. The general patterns show the orders
among categories without knowing the specific methods of
API objects.

In OOP, a method as a unit of program execution can
have one or more functional roles, such as creating an ob-
ject, initializing an object, changing object states, retrieving
an object reference, performing a specific task, and releasing
unused resources. These functional roles can be determined
by referring to OOP rules and conventions.

A constructor is responsible for creating (or instanti-
ating) and initializing an object. It is divided into a no-
parameter constructor and a parameterized one. The no-
parameter constructor instantiates an object and initializes
it with its default values. The parameterized constructor al-
lows client code to supply its own values by supplying ar-
guments into parameters. A setter method can act in two
different roles. The one role is initializing the states of its
object and the other role is changing the object states. A
getter method is invoked to retrieve the value stored in its
object or a reference associated with the object. A finalizer
method is used to release resources held by its object. Sev-
eral objects require the explicit invocations to their finalizers
although the garbage collection would be automatically exe-
cuted. For example, the java.awt.Graphics class provides
the dispose() method to release any system resources as-
sociated with it. The java.io.InputStream class has the
close() method to close its input stream and release any
resources.

All classes have their respective purposes. Each of
them usually provides several methods that perform spe-
cific tasks to fulfill its roles. For example, the drawLine()
method of the Graphics class has an actual role to draw a
line between the specified coordinates. Nevertheless, such
actual roles of methods are ignored in our categorization
since role identification is not trivial. Consequently, the
functional roles of these methods are considered as provid-
ing primary functionalities or performing specific tasks re-
lated to them.

We classify method invocations into the following four
categories based on the functional roles of methods.

1. Creation, denoted by a symbol C, is a category con-
taining all types of constructors. Factory methods also
belong to this category.

2. Initialization, denoted by a symbol I, is a category con-
taining all parameterized constructors and setter meth-
ods.

Fig. 3 Example of code containing method invocations.

3. Primary method, denoted by a symbol M, is a category
containing all methods that provide primary function-
alities of their objects. Getter methods and methods
performing specific tasks are classified into this cate-
gory.

4. Finalization, denoted by a symbol F, is a category con-
taining all finalizers.

The initialization is normally considered as supply-
ing default values or certain values into object states
after construction and before invocations of any pri-
mary methods. However, methods that change object
states are also included into I since changing object
states is considered as re-initializing an object. For
example, there is a sequence of method invocations
〈setColor, drawLine, setColor, drawLine〉, all of which are
provided by java.awt.Graphics. The setColor is catego-
rized into I and the drawLine is categorized into M. The
second invocation of setColor is done, so that the outcome
of the second drawLine is different from the first drawLine
method’s outcome. Therefore, the setColor is considered
as re-initializing the object of Graphics.

3.2 Categorization Heuristics

Although we have defined categories and method invoca-
tions that belong to them, any tools using CSP need an au-
tomatic categorization mechanism. In this paper, we pre-
pare several heuristics based on patterns of textual represen-
tations on source code to classify method invocations and
constructor calls into the defined categories. The details of
our heuristics will be explained with the sample code shown
in Fig. 3.

Creation heuristic I A constructor call belongs to C if it
is contained in an assignment statement and assigns an
object reference to a declared variable on the left-hand
side of the statement. On the right-hand side of the
statement at line 1 in the sample code is a constructor
of the StringBuffer class. On the left-hand side is the
declaration of variable b. The constructor assigns an
object reference to b. Therefore, this constructor invo-
cation is categorized into C. A constructor invocation
at line 3 is also categorized into C.

Creation heuristic II A method invocation belongs to C if
it is contained in an assignment statement and assigns
an object reference of its return type to a declared vari-
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able on the left-hand side of the statement. On the state-
ment at line 4 in the sample code, the getGraphics()
method assigns an object reference to the declared vari-
able g. Therefore, this method invocation is catego-
rized into C.

Initialization heuristic I A parameterized constructor call
that has one or more parameters belongs to I if it is con-
tained in an assignment statement and assigns an object
reference to a declared variable on the left-hand side of
the statement. On the statement at line 3 in the sam-
ple code, a constructor of the BufferedImage class has
three parameters and it assigns an object reference to
the declared variable img. Therefore, this constructor
invocation is categorized to I. Note that a parameter-
ized constructor can be categorized into C and I at the
same time.

Initialization heuristic II A method invocation belongs to
I if its method name starts with the “set” word (which
can be considered as a setter method). A method invo-
cation on the statement at line 5 in the sample code is
categorized into I since the prefix of the method name
is “set”.

Finalization heuristic I A method invocation belongs to F
if its method name matches with one of user specified
method names, such as “close” and “dispose”. The
method invocation on the statement at line 9 in the sam-
ple code is categorized into F since its method name is
“dispose”.

Primary method heuristic I Other methods that are not
categorized into C, I, and F are categorized into M.
All the method invocations to the objects b and g on the
statements at lines 2, 6, 7, and 8 in the sample code are
categorized into M. Note that b.toString() appear-
ing in an argument of g.drawString() at line 8 is also
classified into M since it does not preserve the returned
object reference.

The aforementioned heuristics are not definite since
they are Java language-dependent and convention-dependent.
We use these heuristics during our experiment.

3.3 Sequential Characteristics of Categories

After the categorization is defined, we have to identify the
sequential orders among categories. These sequential orders
enable categories to be used in sequential pattern mining.
They will be used in the mining process to limit the possi-
ble candidates of pattern sequences. Since the categoriza-
tion is based on functional roles, the sequential orders are
determined by restricted appearances of method invocations
having their functional roles.

It is assumed that all four categories C, I, M, and F al-
ways have their corresponding concrete members of method
invocations. We denote the members of each category with
its non-italic symbol C, I, M, or F. Consider for example a
sequence 〈CIIIMMF〉. In such sequence, there will be only
at most one C, at most one F, and an arbitrary number of I

and M. The member of C always appears first if it is present
since an object must exist before its methods are invoked. It
cannot appear in the middle or at the end of the sequence.
The member of F always appears last if it is present since no
other methods can be invoked after F is invoked. The order
of I and M is arbitrary, which depends on each API class.
CSP generates possible candidates of pattern sequences that
will be used in the mining process based on these sequential
characteristics.

Here, our approach uses a continuous sequence [23],
which satisfies a condition that all elements in the se-
quence must appear consecutively. Discontinuous one is not
adopted.

3.4 Code Preprocessing

Before stepping through the mining process, source code
stored in repositories has to be processed into an appropriate
form. Since sequential mining algorithm needs sequences
of items, we must process the source code into sequences
of method invocations. In CSP, the categories act as items
in the mining process. After the sequences of method in-
vocations are extracted, we further categorize them to get
sequences of categories that map the sequences of method
invocations.

Each source file can contain more than one class decla-
ration and each class can contain more than one method dec-
laration. A method consists of various kinds of blocks. CSP
first captures all blocks and then extracts method invocation
sequences in a top-down manner. Inside each block, there
can be more than one variable declaration. All primitive
typed variables, such as int, long, char, etc., and classes en-
closed in the java.lang package are ignored. CSP records
variable declarations that have API classes as types to distin-
guish local sequences with respect to different object vari-
ables. All method invocations that share the same object
variable are collected in the same sequence, called a local
sequence. Then, each method invocation in sequences is as-
signed with a unique integer index. By using the heuristics
mentioned in Sect. 3.2, each method invocation is mapped
onto a category as shown in Fig. 4 (b).

A method (caller) sometimes calls another method
(callee) declared in the same class. In this case, the callee
is inlined with the caller. If method invocations in the callee
might use object references passed through its parameters
by the caller, the parameter names must be adjusted with the
variable names in the caller prior to inlining the callee. This
inlining encourages CSP could obtain longer sequences.
In Fig. 5 (a), the paint() method invokes the drawText()
method. The inlined method invocations corresponding to
this code are shown in Fig. 5 (b). In the inlined code, $g rep-
resents a new variable name for reference to the Graphics
object.

Control structures affect the method invocation se-
quences. There can be many possible paths among con-
trol structures. Mostly used control structures are selection
(if-else-then, switch) and loop (do-while, while, for). The
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Fig. 4 (a) Original code of a method with its control structures, (b) the indexing and the categorization
of method invocations appearing in the method, and (c) the extracted categorized local sequences.

Fig. 5 Inlining method invocations.

selection or loop gives multiple paths depending on condi-
tions. We conceived three options to treat control structures:
(1) tracing all possible paths among control structures, (2)
treating all method invocations in a block as one path regard-
less control structures, and (3) treating each control structure
block as an independent block.

There are trade-offs between these three options. The
choice of the first one makes some subsequences appear
more than once whereas they only appear once in reality.
Moreover, it is hard to treat loops. The second one generates
sequences that might have a longer length. However, the
number of them is very small. We choose the third one since
CSP would get finer granularity of local sequences and easy
implementation would be preferable. In CSP, if a method
invocation x is always followed by a method invocation y,
both x and y are included in the same local sequence. For
example, in Fig. 4 (c), each of four local sequences was ex-
tracted from one independent block appearing in the code
shown in Fig. 4 (a).

Finally, these local sequences are converted into se-
quences of categorized method invocations as shown in
Fig. 4 (c). The final sequences are called categorized local
sequences. Both local sequences and categorized ones are
stored in the sequence database shown in Fig. 2.

3.5 Mining Process

After the preprocessing step, the sequence database is filled

with local sequences and categorized ones. CSP employs a
multilevel sequential mining technique using a concept hi-
erarchy consisting of categorized local sequences. One of
the advantages of multilevel sequential mining is that it ag-
gregates the lower level support values. Mining the lowest
level elements might return insignificant results since some
elements might be scattered in their occurrences.

The categorization is embedded into a concept hierar-
chy. The first level has only one node representing all ob-
ject method invocations. The second level consists of three
nodes that are the categorization into I, M, and F. The third
level consists of each method invocation represented by an
individual node. The pattern mining technique is applied
to the second level to produce intermediate patterns called
k-frequent predefined patterns (or frequent predefined pat-
terns of the length k). Here, we should mention that only
three (I, M, and F) of the four categories are used in the
mining process. The C is not included because its position
is always at the beginning of a sequence. A constructor call
that is only categorized into C is eliminated. If a constructor
call is categorized into both C and I, only the constructor
call in I is considered.

The mining process generates frequent predefined pat-
terns through multiple iterations. In each iteration, the fol-
lowing three steps are performed.

1. Generating possible candidates of predefined patterns.
2. Calculating the support values of the candidates.
3. Extracting frequent predefined patterns based on their

support values.

3.5.1 Generating Possible Candidates

The purpose of this step is to generate all possible sequences
of predefined patterns. A predefined pattern is an ordered se-
quence denoted by r = 〈r1r2 . . . rn〉, which has several con-
straints such as:

(1) r1 ∈ { I,M, F } where n = 1.
(2) r1 ∈ { I,M } where n > 1.
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(3) rn ∈ { I,M, F }.
(4) r j ∈ { I,M } where 1 < j < n.

These constraints are derived from the sequential char-
acteristics mentioned in Sec. 3.3. By this definition, exam-
ples of predefined patterns are 〈I〉, 〈M〉, 〈F〉, 〈IM〉, 〈IMM〉,
and 〈IMF〉. However, 〈FI〉, 〈IFM〉, and 〈IFMM〉 are not pre-
defined patterns since F can only be present at the end of a
sequence.

Generally, a set of possible candidates of k-predefined
patterns are denoted by Pk where k is the length of a prede-
fined pattern. P1, P2 and P3 are shown below, respectively.

P1 = { 〈I〉, 〈M〉, 〈F〉 }
P2 = { 〈II〉, 〈IM〉, 〈IF〉, 〈MI〉, 〈MM〉, 〈MF〉 }
P3 = { 〈III〉, 〈IIM〉, 〈IIF〉, 〈IMI〉, 〈IMM〉, 〈IMF〉,
〈MII〉, 〈MIM〉, 〈MIF〉, 〈MMI〉, 〈MMM〉, 〈MMF〉 }

If the minimum value min and maximum value max of
k are given, all possible candidates are generated, each of
which is contained in the union Pmin ∪ . . . ∪ Pmax.

3.5.2 Calculating the Support Values

CSP determines frequent predefined patterns that reflect
the real usage patterns. Since such usage patterns are ob-
tained from categorized local sequences, it calculates the
support value [8] of each sequence of k-predefined patterns
by counting the total occurrences in categorized local se-
quences contained in a sequence database.

Here, a categorized sequence is an ordered sequence
denoted by s = 〈s1s2 . . . sm〉, where si ∈ { I,M, F }. A prede-
fined pattern r = 〈r1r2 . . . rn〉 is contained in S if there exist
integer i such that r1 = si, r2 = si+1, . . ., rn = si+n−1, where
1 ≤ i ≤ m.

A support value support(r) indicates the number of oc-
currences of a predefined pattern r in the sequence database
that is a collection of all categorized sequences. A prede-
fined pattern r can occur more than once in a sequence s.
This way of counting is different from the sequential min-
ing technique [19] that the support value of a subsequence
is counted as 1 despite its multiple occurrences in one se-
quence. For example, there are a categorized sequence s =
〈IIMIMF〉 and the sequence database containing only s. In
this case, 〈I〉, 〈IM〉, 〈MI〉, 〈MIM〉 are all contained in s and
〈MM〉 is not contained in s. Then, their support values are
support(〈I〉) = 3, support(〈IM〉) = 2, support(〈MI〉) = 1, sup-
port(〈MIM〉) = 1, and support(〈MM〉) = 0.

3.5.3 Extracting Frequent Predefined Patterns

A set of k-frequent predefined patterns is denoted by Lk

where k is the length of a predefined pattern. A min supp
value (0 < min supp ≤ 1) is set to determine Lk. A pre-
defined pattern r is considered as frequent in the sequence
database if its support value exceeds a minimum support
(min supp), that is, support(r) / Tr ≥ min supp. Tr denotes
the total number of categorized sequences whose lengths are

equal to the length of r, which are stored in the sequence
database. The Lk is generated until this step finds the maxi-
mal k that still has frequent predefined patterns.

The frequent predefined patterns are not actual usage
patterns. Therefore, in the searching step, they are used
to obtain actual usage patterns by mapping back from cate-
gories (I, M, and F) to actual method invocations. The fre-
quent predefined patterns and usage patterns are stored into
the pattern database.

4. Sequential Pattern-Based Code Completion

Code completion is one of important tools for develop-
ers while doing programming [12]. It gives them various
benefits, such as typing code faster, minimizing misspelled
code, and reducing their burdens in memorizing the details
of APIs. This section explains one possible application of
sequential patterns discovered by CSP, which is sequential
pattern-based code completion. It extracts method invoca-
tion sequences from code under editing and treats them as
contexts for recommending code completion proposals.

4.1 Code Completion

Eclipse, which is a popular integrated development environ-
ment for Java developers, provides a code completion facil-
ity. In the Eclipse’s code completion (ECC in short), when
a dot character that follows an object reference is typed and
then Ctrl + Space keys are pressed, code completion is acti-
vated and recommends a list of possible method invocations.
This list is called method proposals hereafter.

ECC recommends method proposals alphabetically,
that sorts all method proposals in alphabetical order based
on their method signatures (methods’ names and parame-
ters). ECC also sorts method proposals by their relevance
of return types. Consider that code completion is activated
when writing code for an assignment statement. If ECC can
know the type of a variable appearing in the left-hand side of
the assignment, it will give high relevance values to the pro-
posals whose return types match for the known return type.
The proposals with highest values will be placed at the top
of the list of method proposals.

4.2 Applying Sequential Patterns to Code Completion

There are two scenarios when developers use code comple-
tion [24]. The first scenario is that developers know what
methods they want to invoke, but they still call code comple-
tion and type the method straightly. The second scenario is
that developers do not know what methods of an object they
want to invoke, and they call code completion and search
over the list of method proposals. In the second scenario,
the problem comes when the desired method is far from the
top of the list and the list has too many proposals. It may
take time to find the correct proposal.

We will incorporate our sequential patterns into code
completion to improve the order of method proposals, so
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Fig. 6 Code under editing.

the searching time would be reduced. Since our predefined
patterns and usage ones essentially consist of sequences,
we can take into account method invocation sequences ex-
tracted from the code under editing. The partly written se-
quences would be used as query prefixes in a code comple-
tion mechanism. It compares them with the prefixes of se-
quential patterns stored in the pattern database and computes
the rank of each method proposal based on the matched se-
quential patterns.

Whereas ECC only takes the object reference and the
type of a left-hand variable as contexts when recommending
method proposals, the sequential pattern-based code com-
pletion employs them plus recurring sequences of method
invocations.

4.3 Extracting Query Prefixes from Code under Editing

A sequence of method invocations a developer writes is
helpful for predicting next possible methods. To extract
such sequence, the code under editing will be parsed. This
parsing provides an object reference related to method pro-
posals and a method body containing a sequence to be ex-
tracted.

The cursor position on the code usually indicates where
a developer activates code completion. If the cursor’s posi-
tion is located immediately after a dot character, its prece-
dent variable stores an object reference. Consider sample
code shown in Fig. 6 (a). Since the editing cursor ( ) is be-
ing at line 4 immediately after a dot character, the variable
g holds its object reference. In this case, g is declared in a
parameter list at line 1 and its type is Graphics.

The method body shown in Fig. 6 (a) contains two
statements related to this object reference g (lines 2 and 3).
These statements invoke setColor() and fillRect()meth-
ods in this order. Therefore, a query prefix for the object g
is “Graphics:〈setColor,fillRect〉”.

There is another case where control structures inter-
leave the method invocations. These control structures are
ignored in the extraction. By ignoring, we get a query prefix
that captures all possible method invocations in a method
body. For example, although the if-then structure appears
in Fig. 6 (b), the same query prefix can be extracted as one
extracted from Fig. 6 (a).

4.4 Pattern Searching and Matching

A query prefix is further processed to retrieve patterns that
share the same prefix. This is because it contains a sequence
of actual method invocations whereas predefined patterns

contain a sequence of categorized method invocations. The
query prefix needs to be converted into categorized prefix.
This conversion is done with the categorization heuristics
described in Sect. 3.2. For example, for the query prefix
“Graphics:〈setColor,fillRect〉”, its categorized prefix is
“Graphics:〈IM〉”.

The categorized prefix is then sent to the pattern
database to retrieve predefined patterns. Let length(s) be a
function to return the length of a sequence (a pattern or a
prefix) s. All predefined patterns that share the same prefix
p for a certain type are returned from the pattern database if
their lengths are equal to length(p) +1. For example, the pre-
fix “〈IM〉” returns predefined patterns whose lengths are 3,
such as 〈IMI〉 and 〈IMM〉. In this case, method invocations
corresponding to the last categories (I and M) of the respec-
tive two sequences will be preferentially recommended.

It sometimes happens the length of a prefix is longer
than any predefined patterns in the pattern database or the
prefix has no matched predefined patterns. In this case, the
first element of the prefix is trimmed one by one until the
trimmed prefix finds matched predefined patterns. Consider,
for example, we have a prefix 〈IMIMIM〉, whereas the pat-
tern database holds 〈IMI〉, 〈IMM〉, 〈IMIM〉, and 〈IMIMI〉.
This prefix has no matched predefined patterns. Accord-
ingly, the first element (I) is trimmed to become 〈MIMIM〉.
If the trimmed prefix still returns no matched patterns, it is
trimmed again into 〈IMIM〉 and then it returns 〈IMIMI〉. If
the prefix is trimmed until it has no more elements, then no
predefined patterns are found.

4.5 Recommending Completion Proposals

The pattern database returns more than one predefined pat-
tern in most cases. Therefore, we need to rank the patterns
and present them in a list of method proposals. The returned
patterns have to be converted back to the actual method invo-
cations since the list should contain only the actual method
invocations.

To rank method proposals, we define four metrics
based on features of a predefined pattern (categorized se-
quence) and its instances (sequences of actual method invo-
cations) that share the same predefined pattern. Let a query
prefix be denoted by Q and a categorized query prefix be
denoted by QC . A matched predefined pattern is denoted by
PC . Thus, QC is always a prefix of PC . A suffix of PC is de-
noted by S C , that is, PC is equal to a concatenated sequence
of QC and S C (PC = QC • S C). Let M be a pattern instance
of PC , which is an actual method invocation originating PC .
All of QC , PC , and S C are categorized sequences consist-
ing of I, M, and F, while Q and M are sequences of actual
method invocations. For a sequence s, Occ(s) is a function
that returns the number of occurrences of s in the pattern
database.

The definition of the four metrics is described below.

(1) Occurrence VO = Occ(M)
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Fig. 7 Method proposals in code completion.

(2) Confidence VC =
Occ(QC • S C)

Occ(QC)
=

Occ(PC)
Occ(QC)

(3) relevanceByName VN =

{
1 if Q is a prefix of M
0 otherwise

(4) relevanceByReturnType VR = 0 or a positive integer

VO is calculated based on occurrences of pattern in-
stances of matched predefined patterns. VC represents con-
fidence value [25], which is the proportion of patterns the
association rule QC ⇒ S C predicts correctly. The rule
means that if the given categorized query prefix QC matches
a pattern X then the suffix S C of the predefined patterns PC

appears in X. The VN represents the relevance based on
method names. The VR is calculated based on return types,
which indicates the distance between classes CM and CE .
CM corresponds to the return type of M while CE corre-
sponds to the expected return type that accommodates to a
left-hand variable of a target assignment statement. If both
classes are the same, VR is equal to 0. If CM is a child of CE

in the class hierarchy, VR is equal to 1. VR is equal to 2 if
CM is a child of a child of CE . If CM is not any descendant
of CE , VR has the maximum value of an integer.

Once a query prefix is given, the four values VO, VC ,
VN , and VR are calculated for all the pattern instances stored
in the pattern database. Then, these instances are ranked
based on these values and listed in method proposals. The
VR has a highest priority but its use is optional. If it is not
intended to be used, the same value are assigned to all the
instances, that is, every value of VR is equal. Any instance
whose VR value is equal to 0 will be placed on the top of the
method proposals. The smaller the value of VR is, the higher
its instance will be ranked. If two instances have the same
VR value, their VN values will be compared next. Instances
whose VN values are equal to 1 will be highly ranked. If
two instances have the same VR value and VN value, their
VC values are compared. Furthermore, if their VC values are
same, their VO values are compared each other.

4.6 Implementation

To show the applicability of our approach, we have imple-
mented a mining tool employing CSP as an Eclipse plugin
and extended Eclipse’s code completion facility. It mainly
consists of five modules.

Fig. 8 The view for mining configuration.

The data management module uses ORMLite API [26]
to manage all database connections and queries. The code
repository is a directory in the file systems while the se-
quence and pattern databases are relational databases using
H2 database engine [27].

The preprocessor module performs the preprocess-
ing step for code. It retrieves source files from a code
repository and generates indexed sequences and catego-
rized sequences. We utilize the Partial Program Analysis
(PPA) [28]. PPA is an extension of Eclipse AST Parser that
can parse an incomplete Java program into an AST.

The miner module implements two mining algorithms.
It retrieves sequences from the sequence database and dis-
covers patterns in CSP. The patterns are stored in the pattern
database.

The views module implements several views that pro-
vide user interface for code preprocessing, database access,
mining, and evaluation. Figure 8 shows the view on which
a user configures the mining process.

The code completion module extends the AbstractPro-
posalSorter class provided by Eclipse JDT [29] to override
the existing sorting mechanism of method proposals. We
also utilize PPA to parse code under editing since it is in-
complete or partially input.

Figure 7 shows a comparison between (a) Eclipse’s
code completion based on an alphabetical order, (b) code
completion using sequential pattern mining without catego-
rization, and (c) code completion using CSP. These method
proposals are different. CSP with categorized sequential
pattern mining lets the method setFont() and setColor()
appear higher up in the method proposal shown in (c) than
the method proposal shown in (b). This result agrees with
the motivating example described in Sect. 2.2.
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5. Evaluation

To evaluate the performance of CSP incorporated in our
code completion, we have implemented an automatic eval-
uation program that extracts source code and compares
method proposals against the source code. This kind of
experiments for code completion is adopted from the eval-
uation that has been done by Hou and Pletcher [24]. The
specific purpose of these experiments is to know how well
our code completion can predict the next method invocation
while developers write their code.

All the experiments were carried out on a MacPro with
an Intel Quad-Core 2.4 GHz CPU, running on Mac OS X
10.8.5 and Eclipse 3.7.2 loaded with a Java VM (JRE 1.6.0)
which 2GB memory was allocated to.

5.1 Experimental Setting

We collected 487 source files for mining as training data. To
ensure the randomness of the data, we obtained these files
from four different code repositories, such as Google Code
Search, Koders, Merobase, and GitHub.

In the experiments, we chose the java.awt.Graphics
class that was shipped with the standard Java Development
Kit (JDK). This is because this class can be used in many
ways and combinations. It presents 58 public methods with
many functions, e.g., drawing strings, rectangles, filled rect-
angles, circles, and images. Therefore, various kinds of us-
age patterns can be collected.

Through the preprocessing step, the mining tool totally
detected 3,547 methods invoked from within the 487 source
files, and 3,612 kinds of sequences. Details of them are
shown in Tables 1 and 2. Among them, 48 methods and
223 sequences are related to Graphics. The longest length
is 78.

In each iteration, we selected one min supp value from
among 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 and mined the training
data having sequences whose lengths are between 2 to 15.
Finally, frequent predefined patterns (P) and their instances
(I) were detected as shown in Table 3. CSP uses a mod-
ule dealing with categorized sequences while NCSP uses a
module dealing with non-categorized sequences. A signif-
icant reason why the number of instances (API usage pat-
terns) by CSP substantially exceeds that by NCSP substan-

Table 1 Number of kinds of invoked methods.

API object
Category

C I M F Total
All 568 454 2,489 36 3,547

Graphics 0 9 38 1 48

Table 2 Number of kinds of detected sequences.

API object
Length of sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15 Total
All 2468 642 222 130 53 33 17 8 9 3 9 2 3 0 2 11 3,612

Graphics 84 36 35 23 16 6 3 3 3 2 4 0 1 0 1 6 223

tially is that CSP does not directly deal with the sequences of
method invocations actually written by developers. Instead,
it produces such instances based on the sequences of cate-
gorized method invocations. Due to the use of categoriza-
tion in the mining process, multiple sequences are identical
as mentioned in Sect. 2.2 although they are slightly differ-
ent with each other. In other words, CSP tends to pick up
many sequences whose occurrences are small in the actual
code. NCSP misses these sequences since their occurrences
are separately counted. This agrees with the fact that CSP
derived a lot of instances from a small number of predefined
patterns and NCSP did not. In the preprocessing step, it took
about three minutes to generate categorized local sequences
for all classes existing in the 487 files. On the other hand,
any mining processes were completed in a moment.

For the simulation of code completion, we collected
4,565 files from public code repositories of 10 open source
projects as shown in Table 4. The Graphics object was
totally invoked 5,061 times within these files. Here, we
will briefly explain this simulation. In usual code, meth-
ods of objects for a certain class (e.g., Graphics) are in-
voked multiple times. The automatic evaluation program
scans the whole code and tries to find every method in-
vocation to objects of interest. Once a method invocation
(e.g., g.setColor(. . .)) is found, the program puts the edit-
ing cursor immediately after the dot character and pragmat-

Table 3 Number of extracted frequent predefined patterns and instances.

Algorithm Sort
min supp

0.01 0.02 0.05 0.1 0.2 0.5

CSP P 1,861 1,783 1,660 1,565 1,403 1,196
(All) I 5,354 5,242 4,999 4,705 4,265 3,541

NCSP P 4,573 4,188 3,357 2,706 1,953 828
(All) I 4,573 4,188 3,357 2,706 1,953 828

CSP P 133 90 66 34 21 11
(Graphics) I 666 598 528 368 219 103

NCSP P 242 128 62 37 11 0
(Graphics) I 242 128 62 37 11 0

Table 4 Open source projects used during the experiments.

Project # of files # of invocations
JEdit 554 177
JGraph 1,293 665
JIDE-common 496 3,418
Jude 188 172
Lapis 475 83
OpenSwing 1,001 231
PaintAWT 32 22
SweetHome3D 212 123
Swing tutorial 275 155
Zeus-jscl 39 15
Total 4,565 5,061
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Table 5 Rank scores of CSP and CSP+R and their reductions for ECCA and ECCR.

Project
min supp = 0.01 min supp = 0.02 min supp = 0.05 min supp = 0.1 min supp = 0.2 min supp = 0.5
CSP CSP+R CSP CSP+R CSP CSP+R CSP CSP+R CSP CSP+R CSP CSP+R

JEdit 4,750 3,300 4,734 3,286 4,821 3,372 5,145 3,603 5,179 3,622 7,627 5,118
JGraph 8,799 6,730 8,217 6369 9437 7048 10,615 7,702 10,751 7,770 21,977 14,424
JIDE-common 41,412 28,374 37,540 26,425 40,644 28,431 41,320 28,833 48,901 33,185 73,940 47,229
Jude 2,888 2,293 2,787 2,241 3,205 2,488 3,242 2,506 3,106 2,422 5,946 4,129
Lapis 1,101 885 1,045 850 1,099 882 1,374 993 1,395 1,006 2,789 1,853
OpenSwing 1,972 1,447 1,853 1,375 1,936 1,422 2,414 1,648 2,637 1,772 5,727 3,638
PaintAWT 253 182 253 180 248 175 248 175 248 175 628 394
SweetHome3D 2,857 2,313 2,808 2,291 2,934 2,393 3,010 2,440 3,156 2,521 4,589 3,361
Swing tutorial 1,639 1,193 1,643 1,196 1,624 1,209 1,694 1,220 1,741 1,253 4,762 3,103
Zeus-jscl 298 211 233 174 217 166 213 164 247 182 452 297
Total 65,969 46,928 61,113 44,387 66,165 47,586 69,275 49,284 77,361 53,908 128,437 83,546

RECCA 58.0% 70.1% 61.1% 71.7% 57.9% 69.7% 55.9% 68.6% 50.7% 65.7% 18.3% 46.8%
RECCR 56.0% 68.7% 59.2% 70.4% 55.9% 68.3% 53.8% 67.1% 48.4% 64.0% 14.4% 44.3%

ically activates the code completion. By this simulation,
the program obtains a list of method proposals for each
method invocation. The correct method can be easily cap-
tured since it is followed by the editing cursor on the code.
The setColor() is the correct method if a method invoca-
tion g.setColor() is a target for the code completion simu-
lation.

5.2 Evaluation Metrics

One experiment in the simulation will present a list of
method proposals consisting of 58 public methods of
Graphics for each method invocation. In the experiment,
a rank score is given to each method proposal of the list.
The rank score of the first method proposal is 0, and that
of the second method proposal is 1. Generally, the ranked
score of the n-th method proposal is n − 1. If the correct
method is setColor() and this method is recommended as
the fourth proposal in the list, the rank score is 3. For the
evaluation, we totaled the rank scores of all experiments
for each project. Furthermore, we aggregated all total rank
scores from all projects. Code completion that can achieve
the minimum total number of rank scores is considered bet-
ter. If it could perfectly present the correct methods at the
top of respective lists, the total score should be 0.

In this evaluation, we prepared six kinds of code com-
pletion mechanisms. Both CSP and CSP+R denote mech-
anisms introducing categorization. CSP ignores the val-
ues of relevanceByReturnType while CSP+R utilizes it to
rank method proposals. Both NCSP and NCSP+R denote
mechanisms not introducing categorization. NCSP ignores
the values of relevanceByReturnType as well as CSP while
NCSP+R utilizes it as well as CSP+R. The remaining two
mechanisms are ECCA (Eclipse’s code completion alpha-
betically) and ECCR (Eclipse’s code completion by rele-
vance). In this evaluation we did not set any confidence
value (i.e., its minimum value is 0) since code completion
must list all possible method invocations.

CSP, CSP+R, NCSP, and NCSP+R generate their lists
of method proposals based on patterns stored in the pattern
database. In some cases, they fail to provide method pro-
posals when no patterns are found. If they fail, they will

still present lists of proposals by default, which is the same
as one derived from ECCA. Therefore, if each of CSPN,
CSP+R, NCSP, or NCSP+R fails in every experiment, its
total rank score should be the same as the ECCA’s.

Besides the rank scores, we collected success values
of N-rank. These values show how many times each code
completion mechanism successes to provide the correct
method in the range of the N-rank. Consider for example
setColor() as the correct method. If the first method pro-
posal on the presented list is equal to the correct method, that
is, setColor() appears at the top of the list, the mechanism
is considered to achieve the 1-rank success. In this case, the
automatic evaluation program increments the 1-rank value
by one. If setColor() appears at the second of the list,
the program increments the 2-rank value by one but does
not change the 1-rank value. For the 5,061 method invoca-
tions, when the mechanism achieves the 1-rank successes in
all the experiments, its 1-rank value becomes 5,061. Mean-
while, the success value of 58-rank is always 5,061 for every
mechanism since Graphics has overall 58 public methods.

5.3 Evaluation Results

Table 5 presents the results of total rank scores for 10
projects with respect to CSP and CSP+R. Here, the to-
tal rank scores for ECCA and ECCR were 157,210 and
150,135, respectively. Therefore, the reduction of CSP
for ECCA under min supp = 0.01 was computed as R =
1 − 65, 969 / 157, 210 = 0.58. In Table 5, RECCA and RECCR

indicate reductions of the respective rank scores for ECCA
and ECCR. These evaluation results show our code com-
pletion (CSP and CSP+R) outperforms ECCA and ECCR
in all cases. In other words, CSP leaded to significant im-
provement over default Eclipse’s code completion (for RQ1
described in Sect. 2.3).

We made further code completion simulation and col-
lected total rank scores with respect to CSP and CSP+R
so as to compare them with those of NCSP and NCSP+R.
Figure 9 summarizes several reductions of rank scores for
ECCA. The reductions of CSP and CSP+R show the largest
values (61.1% and 71.7%) under min supp = 0.02. An
overall look at the line chart in Fig. 9 reveals improvement
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Fig. 9 Reductions of rank scores for ECCA.

of CSP and CSP+R in all cases. In particular, the small
values of min supp (≤ 0.1) yielded better results; CSP
and CSP+R obtained the larger reductions for NCSP and
NCSP+R, respectively. On the other hand, the reductions
of CSP and CSP+R gradually decline under the value of
min supp more than 0.1 although there is observable im-
provement for NCSP and NCSP+R. Consequently, our cat-
egorization benefits code completion as compared with non-
categorization, depending on the support value in sequential
pattern mining (for RQ2 described in Sect. 2.3).

With respect to the results shown in Fig. 9, we could
consider a little more. In Table 3, the numbers of produced
patterns (pattern instances which are actually used in code
completion) for Graphics in CSP gradually decrease. How-
ever, the changes of their reductions are not proportional
to those of the number of the patterns. For example, un-
der min supp ≤ 0.1, the number of the patterns in CSP de-
creases (666 → 368). Nevertheless, its reduction remains
roughly flat. Moreover, the change of the numbers of pat-
terns in CSP and CSR+R cannot explain a rapid drop under
min supp = 0.5. There is an explicit gap between the reduc-
tion of CSP and CSP+R under min supp = 0.5 (18.3%) and
that of NCSP under min supp = 0.02 (40.8%) although the
numbers of their respective patterns are relatively the same
(103 and 128). We obtained the similar results in CSP+R
and NCSP+R. As might be expected, a reasonable number
of patterns must be produced to benefit improvement of code
completion. In fact, NCSP never leads improvement under
min supp = 0.5 because of no produced pattern. Unfortu-
nately, this evaluation figures out neither how many patterns
are required nor relationships between the amount of the
produced patterns and its effect. Instead, it shows that the
amount of patterns does not directly affect improvement of
code completion. This might be predictable.

To obtain the deeper findings from our experiments,
we also measured N-rank success ratios. Figure 10 depicts
these ratios under min supp = 0.02 that provides best im-

Fig. 10 Success ratios of proposals in N-rank.

provement in CSP and CSP+R. For example, the 1-rank
value in CSP+R is 2,187, and thus the ratio is 43.2% which
was computed as S = 2, 187 / 5, 061. The divisor is the to-
tal number of method invocations to Graphics. Throughout
the whole simulation, CSP and CSP+R would be beneficial
as compared with ECCA and ECCR. In about half of all the
recommendations during code completion, correct methods
are ranked at top 1 or 2 of the proposal list. If the proposal
list presents 10 methods at the same time, developers can see
the correct method within the list without scrolling down in
about 70% of all the recommendations.

Comparing the performances of CSP and CSP+R,
there would be little difference since a gap between their
success ratios is very small from 1-rank through 9-rank. The
performances of NCSP and NCSP+R denote the same ten-
dency. The main reason for this result would be that the
utilization of return types (relevanceByReturnType) did not
have a beneficial impact on narrowing recommendation can-
didates down to highly-limited number of them. In other
words, information on return types might be unhelpful in
this situation. This leads to the guess that CSP+R might
provide little significant improvement to CSP in realistic en-
vironments of software development.

Figure 10 reveals other findings with a different per-
spective from the amount of the produced patterns. Suc-
cess ratios of CSP and NCSP (plus CSP+R and NCSP+R)
are almost the same for 1-rank although the numbers of the
produced patterns differ (666 and 242). That is, the first
proposal is the same with or without categorization. On
the other hand, explicit gaps appear from 2-rank through 9-
rank. These results agree with the fact that CSP is tolerant
of actual code as mentioned in Sect. 2.2. CSP (and CSP+R)
leaves a lot of pattern instances as candidates for the second
and later proposals whereas NCSP (and NCSP+R) misses
such candidates since NCSP is too sensitive for the code ac-
tually written by developers. This would be one of the main
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reasons that CSP using categorized sequential pattern min-
ing can bring better improvement in code completion than
NCSP based on the traditional sequential mining.

5.4 Threats to Validity

There are several variables that can alter the effectiveness of
CSP.

With respect to categorization, the sort of categories
and heuristics for classifying method invocations are con-
siderable. In our categorization, we decided four categories:
C (creation), I (initialization), M (primary method), and F
(finalization). For C, I, and F, their heuristics might be rea-
sonable since our API usage pattern represents the flow of
method invocations during the lifetime of an API object and
their respective roles are quite explicit. Especially, API ob-
jects (GUI components) in graphic libraries have a strong
tendency toward this. For example, the Graphics object
used in our experiments is a typical instance. In contrast,
M are still problematic since it represents a wide range of
functional roles. In Table 1, 70.2% and 79.2% of method
invocations belong to M. This opens a possibility to intro-
duce the finer categorization of them, especially for M.

Heuristics in our categorization mechanism have room
to improve since they rely on the textual representations on
the source code. Sometimes method names might not rep-
resent the functional roles of methods. For example, the
finalize() method of Graphics should belong to F but
belongs to M. To find other mistakes in categorization,
we selected 100 method invocations from among all 3,547
ones and examined their categorization results. The selected
method invocations include all 48 ones related to Graphics
and 52 ones randomly selected. Through this examination,
we found seven questionable results. For example, three
method invocations starting with “set” should belong to M
instead of I. Two ones starting with “create” should be be-
long to C instead of M. Moreover, one starting with “load”
should belong to C instead of M. The 7 out of 100 method
invocations are regarded as low. However, this result cannot
demonstrate our heuristics are always reasonable and useful.

Besides these perspectives, the effectiveness of CSP
depends on the way of dealing with conditional statements,
primitive typed variables, and classes enclosed in the stan-
dard libraries in preprocessing.

The threats to external validity are mainly related to the
collections of data in training and/or simulation. Although
the training data were randomly collected in our experiment,
their amount is small. Moreover, the target of the simulation
is only Graphics class. Using different training data and dif-
ferent target class gives rise to variant results. We must make
a large number of experiments to check whether the results
can be generalized to show improvement to existing code
completion mechanisms for any class. The threats to inter-
nal validity are related to evaluation metrics such as rank
scores and success ratios of N-rank. These metrics might
bias experimental results.

6. Related Work

To generate usage patterns, we need to collect enough
source code that contains a massive amount of usages of de-
sired APIs. Code repositories already contain a huge code-
base [30]. This causes several approaches to extract usage
patterns from code repositories. A comprehensive survey on
source code mining techniques [31] is informative to quickly
obtain a brief summary of them.

CodeWeb [2] determines reuse patterns of APIs by con-
sidering inheritance relationships. It uses association rules
to reveal relationships between a class and its superclass.
SpotWeb [32] analyzes how often API methods are utilized
by client code. PROSPECTOR [33] synthesizes code snip-
pets containing a chain of method invocations that take an
input object and produce an output object. XSnippet [10]
retrieves code examples that are relevant to object instanti-
ation from repositories. PARSEWeb [34] mines method in-
vocation sequences related to object instantiation from the
source code by clustering them. SSI [11] associates words
to source code entities based on similarities of API usage
and eases the retrieval of examples of how to use APIs of
interest.

MAPO [5] and MACs [3] are the closest study of our
one as mentioned in Sect. 2. MAPO mines sequences of
method calls using frequent subsequences mining. MACs
combines both of association rules and sequential rules to
produce usage patterns from the source code retrieved from
code repositories. The source code is abstracted into a high-
level form and stored as transactions. Then, the transac-
tions are mined to get the association patterns and sequen-
tial patterns [8]. MAPO and MACs focus on determining
sequences of method invocations, while JADET [4] utilizes
finite state automata as source code representations and fre-
quent itemset mining to detect usage anomalies. A mining
partial orders technique [6] enables multiple possible paths
of invocations to be captured in a frequent partial order.
GrouMiner [7] transforms source code into graph represen-
tations and returns frequent sub-graphs as usage patterns.

Besides aforementioned approaches, there are several
techniques that mine usage patterns from code repositories
and recommend them through code completion systems.
Bruch et al. implemented three code completion systems,
such as a frequency-based, an association rule-based, and
a best matching neighbors code completion systems [35].
Their idea was implemented as a Code Recommenders plu-
gin that is built on Eclipse 4.2. Nguyen et al. introduced
a new graph-based code completion system that recom-
mends full usage patterns instead of a single method invo-
cation [13]. A system by Zhang et al. focused on parame-
ter recommendation instead of method calls [14]. It collects
parameter usages from code repositories and recommends
them through code completion. A technique by Han et al.
completes multiple keywords instead of one keyword based
on abbreviated input of code [36]. It uses frequent keyword
patterns learned from a corpus of existing code. Robbes
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and Lanza defined a benchmark measuring the accuracy and
usefulness of a code completion engine and presented a new
engine of code completion [12]. It surpasses structure-based
pattern matching by utilizing change history of programs.

7. Conclusion

This paper has presented an improved approach on mining
sequences of method invocations. In this approach, we di-
vide method invocations into four categories based on func-
tional roles. The functional roles denote correct and allow-
able ways on how objects’ methods are invoked. Therefore,
they generate only pattern candidates that satisfy the limited
or relaxed order of functional roles.

A code completion mechanism with categorized se-
quential mining has presented to show the applicability of
usage patterns obtained from our approach. Our code com-
pletion extends the existing Eclipse code completion and
re-sorts the completion proposals based on the ranking of
the usage patterns. The evaluation results with the running
implementation of this mechanism show that our approach
outperforms Eclipse’s code completion or existing ones.

Several issues were mentioned in Sect. 5.4. We are
planning to tackle these issues as the future work. If finer-
grained categorization can be attained, the more sequen-
tial characteristics could be considered. This could produce
more good API usage patterns. A more sophisticated code
manipulation might be required for a variety of API objects
and programming styles. Moreover, we are going to make
a large number of experiments with our approach. Various
kinds of evaluation metrics would be further discussed to
demonstrate that CSP truly produces useful API usage pat-
terns.
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