
A Tool Supporting Postponable Refactoring
Katsuhisa Maruyama

Department of Computer Science
Ritsumeikan University, Japan

maru@cs.ritsumei.ac.jp

Shinpei Hayashi
Department of Computer Science

Tokyo Institute of Technology, Japan
hayashi@se.cs.titech.ac.jp

Abstract—Failures of precondition checking when attempting
to apply automated refactorings often discourage programmers
from attempting to use these refactorings in the future. To
alleviate this situation, the postponement of the failed refactoring
instead its cancellation is beneficial. This poster paper proposes
a new concept of postponable refactoring and a prototype tool
that implements postponable EXTRACT METHOD as an Eclipse
plug-in. We believe that this refactoring tool inspires a new field
of reconciliation automated and manual refactoring.

Keywords-software evolution; software refactoring; precondi-
tion checking; code change management

I. INTRODUCTION

Refactoring improves the design of existing code without
changing its behavior [1]. Therefore, modern Integrated De-
velopment Environments (IDEs), including Eclipse, IntelliJ
IDEA, and Visual Studio support several automated refactor-
ings that enable programmers to easily apply the behavior-
preserving transformations of existing code. Nonetheless, they
greatly underuse automated refactoring tools [2]–[6]. This
is mostly due to usability problems and thus several im-
provements of existing refactoring tools have been proposed.
Especially, WitchDoctor [7], BeneFactor [8], and GhostFac-
tor [9] emphasize the significance of reconciling manual and
automated refactorings to make refactoring tools more usable.

Among the usability problems, precondition checking [10]
might be an obstacle to the widespread use of automated
refactorings, which is adopted in almost all refactoring tools.
In general, the preconditions should be strong enough to
prevent the applied refactoring from breaking compilable code
or altering its behavior. On the other hand, error messages re-
sulting from precondition checking frequently discourage pro-
grammers from activating the applied refactoring again [11].
From this perspective, several studies have revealed overly
strong (pre)conditions in refactoring [12], [13]. We believe
that precondition checking remains in every refactoring tool
although some of the preconditions are overly strong and many
programmers prefer to relax them, since precondition failures
are foreboding signs. Programmers should keep in mind that
the disregard of such failures might involve troublesome
manual review of the behavior of the changed code.

This poster paper presents a new kind of refactoring tool
that can postpone the application of automated refactorings
to alleviate one aspect of the usability problems. The tool
allows a programmer to suspend the execution of the applied
refactoring if its preconditions are not satisfied and to restart

the suspended refactoring once all the preconditions are sat-
isfied. This postponement brings a situation in which she can
freely change code by hand or by automated transformations
(e.g., refactoring and quick assist) while checking whether
the suspended refactoring can be restarted. Restarting never
requires her to once again identify the target code fragments
and to reconfigure the refactoring settings of options. The
refactoring contexts (the identified code and the configuration
settings) provided when she activated a refactoring before
is automatically stored in the tool. The tool manages them
depending on the later code changes, and also recalls them
so that the tool can restart the suspended refactoring without
her unnecessary intervention. The prototype tool currently
supports the postponement of EXTRACT METHOD, which is
implemented as an Eclipse plug-in.

II. POSTPONABLE REFACTORING TOOL

The Eclipse refactoring tool checks several predefined pre-
conditions and reports its result with a severity level of
information, warning, error, or fatal error. Errors predict the in-
troduction of compilation errors and non-behavior preservation
changes. The (normal) errors advise a programmer to abort
the applied refactoring, and the fatal errors quit continuing
the execution of the refactoring.

In postponable refactoring, some of the normal and fatal
errors are reclassified into recoverable ones. As a result, it
treats three kinds of errors: normal, fatal, and recoverable.
Theoretically, all the errors seem to be recoverable if the
identified code fragments are completely rewritten. However,
it might be hard for programmers to maintain the refactoring
contexts of a suspended refactoring during a large rewrite of
the code. Thus, in the current prototype tool, we addressed two
precondition failures of the EXTRACT METHOD: “Ambiguous
return value” as a fatal error and “Already existing method
name” as a normal error, which are both easy to recover. In
the EXTRACT METHOD, the modified values of local variables
within the newly extracted method must be returned from it if
those values are accessed after the invocation of the extracted
method. Moreover, the name of the extracted method should
differ from the names already existing in the class defining the
extracted method to avoid a compilation error resulting from
name duplication.

For example, in Figure 1, when the EXTRACT METHOD
is applied to the code fragments within lines 2–8, an “Am-
biguous return value” error occurs for variables amount and



1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

Fig. 1. Code snippet that is a target of EXTRACT METHOD.

Fig. 2. Fatal error report of postponable EXTRACT METHOD.

basePrice. If a programmer uses the Eclipse’s original
refactoring tool, she must cancel EXTRACT METHOD and edit
the problematic code (INLINE TEMP or REPLACE TEMP WITH
QUERY for basePrice might be feasible). After that, she
will restart the EXTRACT METHOD from the beginning by
identifying code fragments and selecting the menu item. The
burden of this restarting might lead her to manually refactor
the code.

Differing from the original automated refactoring, a post-
ponable refactoring encourages a programmer to continue
automatic application of refactoring. Figure 2 depicts a fatal
error dialog of the postponable EXTRACT METHOD, appearing
when the precondition checking detects a recoverable error
and no fatal error. She can suspend the execution of this
refactoring by clicking the ‘Postpone’ button that is added
to the dialog. The suspended refactoring appears in a view
located on the right side of the editor as shown in Figure 3. The
red bar represents that the current status is under temporary
suspension.

The postponable refactoring tool monitors any editing of
code fragments specific to a suspended refactoring. In this ex-
ample, it monitors the whole body of method statement()
including the code fragments a programmer identified at
the beginning. It also keeps track of all editing within the
files related to the monitored code fragments by employing
ChangeMacroRecorder [14] and also adjusts the selection
range. It records every editing action that a programmer
performed on the Eclipse Java editor in the background, which
is the same as OperationRecorder [15], Fluorite [16], and
CodingTracker [17].

Each time the postponable refactoring tool detects an edit of
the monitored code fragments, it attempts to check precondi-
tions of the suspended refactoring. If the precondition checking
reports no recoverable error and no fatal error, the current
status is shifted to restartable in which the bar is colored with
green. Otherwise, the current status is not changed. One more
trigger of the status transition is a file-save action. When a
programmer saves the file that contains the monitored code
fragments, the tool checks the preconditions of the suspended

save

contains	a	fatal	error

contains	a	recoverable	
error	and	no	fatal	error

edit

save

edit

edit

edit

edit

edit

edit

contains	no	recoverable	
error	and	no	fatal	error

Fig. 3. Status of postponable EXTRACT METHOD.

refactoring. If the precondition checking reports a fatal error,
the color of the bar becomes brown.

The current status of each suspended refactoring is deter-
mined by the worst severity level of precondition failures
and changed as shown in Figure 3. Whenever the bar is
colored with green, a programmer can restart the suspended
refactoring. She can also cancel it anytime if it does not need
to be applied hereafter. The canceled refactoring is removed
from the view. The reason why the non-restartable status is
divided into red and brown is that the tool can explicitly inform
programmers of the severity level of errors. Many of them are
likely to cancel suspended refactorings under the brown status.

Actually, the Eclipse’s refactoring tool performs two kinds
of precondition checks before a programmer inputs infor-
mation (called an initial check) and after the input action
(called a final check). If she suspends EXTRACT METHOD
after she already inputs some information (e.g., the name
and the visibility of a newly extracted method) through the
configuration dialog, the postponable refactoring tool stores
the information. All of the refactoring settings necessary to
restart are automatically restored from the stored information.

The significant benefit of use of the postponable refactoring
tool is that restarting a suspended refactoring is lightweight,
as compared with traditional refactoring tools that need trou-
blesome reconfiguration when a programmer wants to apply a
failed refactoring again. Moreover, awareness of the current
status of a suspended refactoring could keep or raise her
motivation for restarting it.

III. CONCLUSION

This paper proposed postponable automated refactoring and
described a prototype tool [18] that supports the postponement
of EXTRACT METHOD. We will improve the tool so that it can
support other automated refactorings. In addition to improve-
ment in usability, such a tool might be able to provide exact
information about relationships between suspended, restarted,
and canceled refactorings, which traditional refactoring tools
can hardly manage. We will also make simulation-based eval-
uation and/or empirical study to demonstrate the performance
and effects of postponable refactoring.

ACKNOWLEDGMENT

This work was sponsored by the Grant-in-Aid for Scientific
Research (15H02685).



REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,”
IEEE Software, vol. 25, no. 5, pp. 38–44, 2008.

[3] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” in Proc. ICSE ’09, 2009, pp. 287–297.

[4] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, disuse, and misuse of automated refactorings,” in
Proc. ICSE ’12, 2012, pp. 233–243.

[5] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
comparative study of manual and automated refactorings,” in Proc.
ECOOP’13, 2013, pp. 552–576.

[6] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and befits at Microsoft,” IEEE TSE, vol. 40, no. 7,
July 2014.

[7] S. R. Foster, W. G. Griswold, and S. Lerner, “WitchDoctor: IDE support
for real-time auto-completion of refactorings,” in Proc. ICSE’12, 2012,
pp. 222–232.

[8] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling manual and
automatic refactoring,” in Proc. ICSE’12, 2012, pp. 211–221.

[9] X. Ge and E. Murphy-Hill, “Manual refactoring changes with automated
refactoring validation,” in Proc. ICSE’14, 2014, pp. 1095–1105.

[10] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE TSE,
vol. 30, no. 2, pp. 126–139, 2004.

[11] E. Murphy-Hill and A. P. Black, “Breaking the barriers to success-
ful refactoring: Observations and tools for extract method,” in Proc.
ICSE’08, 2008, pp. 421–430.

[12] G. Soares, M. Mongiovi, and R. Gheyi, “Identifying overly strong
conditions in refactoring implementations,” in Proc. ICSM’11, 2011, pp.
173–182.

[13] M. Vakilian and R. E. Johnson, “Alternate refactoring paths reveal
usability problems,” in Proc. ICSE’14, 2014, pp. 1106–1116.

[14] ChangeMacroRecorder, https://github.com/
katsuhisamaruyama/ChangeMacroRecorder.

[15] T. Omori and K. Maruyama, “A change-aware development environment
by recording editing operations of source code,” in Proc. MSR’08, 2008,
pp. 31–34.

[16] Y. Yoon and B. A. Myers, “Supporting selective undo in a code editor,”
in Proc. ICSE ’15, 2015, pp. 223–233.

[17] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig, “Is
it dangerous to use version control histories to study source code
evolution?” in Proc. ECOOP’12, 2012, pp. 79–103.

[18] PostponableRefactoring, https://github.com/
katsuhisamaruyama/PostponableRefactoring.


