
A Visualization Tool Recording Historical Data of
Program Comprehension Tasks

Katsuhisa Maruyama
Dept. Computer Science
Ritsumeikan University

Shiga, 525–8577, Japan
maru@cs.ritsumei.ac.jp

Takayuki Omori
Dept. Computer Science
Ritsumeikan University

Shiga, 525–8577, Japan
takayuki@fse.cs.ritsumei.ac.jp

Shinpei Hayashi
Dept. Computer Science

Tokyo Institute of Technology
Tokyo, 152–8552, Japan

hayashi@se.cs.titech.ac.jp

ABSTRACT
Software visualization has become a major technique in program
comprehension. Although many tools visualize the structure, be-
havior, and evolution of a program, they have no concern with how
a tool user has understood it. Moreover, they miss the stuff the user
has left through trial-and-error processes of his/her program com-
prehension task. This paper presents a source code visualization
tool called CodeForest. It uses a forest metaphor to depict source
code of Java programs. Each tree represents a class within the pro-
gram and the collection of trees constitutes a three-dimensional for-
est. CodeForest helps a user to try a large number of combinations
of mapping of software metrics on visual parameters. Moreover,
it provides two new types of support: leaving notes that memorize
the current understanding and insight along with visualized objects,
and automatically recording a user’s actions under understanding.
The left notes and recorded actions might be used as historical data
that would be hints accelerating the current comprehension task.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]: Restruc-
turing, reverse engineering, and reengineering; D.2.8 [Metrics]:
Product metrics

General Terms
Human Factors

Keywords
Software visualization, software metrics, software reengineering,
static analysis, cognitive process

1. INTRODUCTION
Program comprehension is considered to be a task that compre-

henders (mainly maintainers) could obtain fresh knowledge about
the target programs from their existing understanding [11, 14]. It
is a indispensable technique to make software maintenance suc-
cessful. This is because a maintenance task requires maintainers to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

obtain the deep knowledge about the target software. For example,
the success (or failure) of refactoring would depend on the degrees
of knowledge about existing source code of software.

Each comprehender forms a mental model of the target program.
It will be done through the cognitive process using his/her previous
and new knowledge. To form a plausible mental model, a compre-
hender tries to correctly capture its structure and behavior. In other
words, he/she must grab the facts underlying the program. The use
of program comprehension tools would clarify such facts.

A program visualization tool is one of potent candidates that sat-
isfy this requirement [6]. In fact, a number of 2D or 3D visual-
ization approaches have been developed for specific activities of
software development and maintenance [5]. Moreover, several re-
sults of controlled experiments show a significant improvement in
solving a number of program comprehension tasks [8, 12, 16].

There are no questionable points of effective support provided by
several visualization tools in solving program comprehension tasks.
However, may we say that existing tools provide enough support
of their interactions with tool users? Have the tools provided only
facts, reasons, and/or evidences as a product that leads to an answer
to a question in programming?

To our knowledge, almost all visualization tools for program
comprehension limit their functionality to visualization of the struc-
ture, behavior, and evolution of a program. The tools only provide
different representations captured in various aspects of the pro-
gram. Unfortunately, they have no concern with how a tool user
has understood it and what he/she has left through his/her program
comprehension task. If various kinds of facts obtained through vi-
sualization are apt to be muddled, a visualization tool should keep
track of a user’s actions and their visualization results. In this tool,
a user himself/herself or other users could easily access such his-
torical data during performing the current task.

This paper presents a visualization tool called CodeForest. It
uses a forest metaphor to depict source code of Java programs.
Each class within the program is represented by a tree and the col-
lection of trees constitutes a three-dimensional forest. The presen-
tation technique of the tool imitates that of CodeCity [15] adopting
a city metaphor, and is similar to CodeMetropolis [2] adopting a
metropolis metaphor. Similar to CodeCity and CodeMetropolis,
CodeForest maps a set of software metrics on the visual parame-
ters of source code. The small difference between these tools is
that CodeForest supports more than 10 software metrics and free
visual mapping of them on 6 visual parameters by default. In other
words, a tool user can try a large number of combinations of visual
mapping. This helps wider exploration of visualization. The large
difference is that CodeForest provides two types of breadcrumbs.
Whenever any questions, conjectures, and answers come into a
user’s mind, he/she can leave notes that memorize them. More-

Figure 1: Screenshot of visualization by CodeForest of CodeForest (11 packages and 109 classes).

over, CodeForest automatically records a user’s actions such as a
change of the setting of visual parameters or a change of the focus
of visual objects. The left notes and recorded actions are consid-
ered historical information. It helps retrospective of past activities
in a user’s task of understanding a program. It will be also hints for
his/her future understanding or understanding done by others.

The main contribution of this paper is to present a running imple-
mentation of a new type of visualization tool that exploits historical
information about a user’s actions. This tool would show possibil-
ity of promoting the usefulness of visualization tools.

2. CODEFOREST
This section first describes how CodeForest visualizes Java source

code. Then, it explains what information CodeForest records to
support program comprehension.

2.1 Visual Objects and Parameters
Fig. 1 shows a screenshot of visualization by CodeForest. It vi-

sualizes Java source code by using two kinds of trees. A tree in a
forest view (top left window) provides only information on a class,
which is called a forest tree hereafter. A tree in a tree view (top
right window) provides detailed information on methods of a spec-
ified class, which is called a detailed tree hereafter. A tool user can
switch a detailed tree displayed in the tree view by left-clicking a
forest tree displayed in the forest view. A source code view located
at left bottom displays source code of a class a user selects in the
forest view. A properties view located at right bottom presents in-
formation with respect to several properties of source code, which

Figure 2: Forest tree with visual parameters.

lists pairs of the name of a software metric and its value. A setting
view is located at right middle. In this view, a user can change vi-
sual settings that affect the form of a forest tree. In the tree view,
he/she can also change visual settings that affect the form of a de-
tailed tree.

Here we will explain the visual parameters in detail. CodeFor-
est provides 6 visual parameters of a forest tree: the trunk height,
trunk radius, trunk color, foliage height, foliage radius, and foliage
color, as shown in Fig. 2. It also provides 9 visual parameters of
a detailed tree: the trunk height, trunk radius, trunk color, branch
length, branch radius, branch color, branch number, leaf number,
and leaf color. Each branch of a detailed tree represents a method
of a class corresponding to the tree. Thus, the value of the branch
number is equal to the number of methods within the class. This
tree allows a user to change the settings of only the leaf number and
color. The trunk height, radius, and color of a detailed tree inherit

Table 1: Software metrics suite

Abbr. Metrics Forest Detailed
(for classes) (for methods)

LOC Number of lines of code √ √

NOST Number of statements √ √

NOMD Number of methods √

NOFD Number of fields √

NOMF Number of methods and fields √

NOPM Number of public methods √

NOACL Number of afferent classes √

NOECL Number of efferent classes √

CBO Coupling between objects [4] √

DIT Depth of inheritance [4] √

NOC Number of children [4] √

RFC Response for classes [4] √

WMC Weighted methods per class [4] √

LCOM Lack of cohesion methods [4] √

CC Cyclomatic complexity [9] √

MNON Maximum number of nesting √

NOPT Number of parameters √

from those of a forest tree. The branch length and radius are both
calculated based on the trunk height and radius, respectively.

In summary, a user can map software metrics to 6 visual param-
eters of a forest tree and to 2 of a detailed tree. The 17 software
metrics shown in Table 1 are totally prepared. Among them, 14
metrics are related to a forest tree and 5 metrics are related to a
detailed tree.

2.2 Historical Data in CodeForest

2.2.1 Usage Scene
A user of a visualization tool explores source code by observing

its visual representation. In the context of refactoring support, the
goal of this exploration is to find bad smells by obtaining compre-
hensively knowledge of the source code without caring its detailed
information. For this, it might be preferable that a visualization tool
can provide a variety of visual representations of source code.

In CodeForest, a user has a chance to freely combine 14 software
metrics with 6 visual parameters of a forest tree. This means that
there are a large number of combinations creating various visual
representations as a forest. The user must select one option from
among the combinations to obtain a specific visual representation.
Here the selected option is called a working set, which is a collec-
tion of software metrics mapping on respective visual parameters.

The important point is that one-time selection of a working set
never completes program comprehension in most cases. A user
selects a working set and interprets its corresponding visual repre-
sentation. This activity is a cyclic and has been frequently repeated
during the process building his/her mental model. For example,
the user first assigns the CBO metric to the “trunk color”. Then,
he/she will pick up some trees based on their tones of color. In
Fig. 1, the rightmost tree would be selected since it seems to have
high coupling with other classes. He/she would keep this insight
in mind and proceeds to a next cycle. Additionally, he/she would
memorize the current working set since he/she might come to want
to go back the current visual representation after several times of
cycles. In short, a user’s activity mainly consists of (1) selection of
a working set, (2) interpretation of a visual representation, and (3)
memorization of the current situation.

2.2.2 Annotation to Visual Objects
Considering capacity limitations of short-term memory of hu-

man, free annotation is useful in general. We often write notes
instead of memorize the contents of the notes. Such annotation

Figure 3: Memo view of CodeForest.

makes retrieval of information at the time from long-term memory
more reliable. We believe that free annotation to visual objects in a
specific representation is useful in the context of program compre-
hension. This seems to be plausible because the future version of
CodeMetropolis [2] will support of code annotation.

CodeForest enables its user to write notes that memorize infor-
mation about a specific tree. When he/she selects a visual object by
right-clicking it in the forest view, the tree view will be switched to
the memo view. This view displays all memos with respect to the
selected tree, which are ordered in time (a most recent memo is dis-
played in the top). Fig. 3 shows the memo view. Three memos were
attached to the class ClassMetrics, which represent inquiries [7].

2.2.3 Interaction with Visual Representation
We emphasize a user’s activity in the cycles of program compre-

hension tasks as described in Sec. 2.2.1. To support this activity,
CodeForest automatically records a user’s actions (usage data) of
setting visual parameters to reduce the overhead of trial-and-error
process. Moreover, it allows him/her to manage working sets of
settings of visual parameters. By pushing the “Working Set” but-
ton on the setting view shown in Fig. 1, he/she can invoke a dialog
that provides functionality of adding a set of the current settings,
removing any existing working set, and recalling one of existing
working sets. CodeForest also records these addition and removal
actions. Fig. 4 shows the interaction view. This view and properties
view alternatively appears.

In the interaction view, one line indicates each of a user’s actions
performed in the past. For example, the line 5 denotes that a user
changed software metrics for the visual parameter with respect to
“trunk color”. The line 8 denotes he/she added a new working set
named as “Test 3”.

In addition to a user’s actions related to settings of visual param-
eters and working sets, actions related to annotation and undo/redo
operations are automatically recorded. The line 16 denotes that a
user wrote a new note. The lines 12 and 14 denote that he/she has
performed undo and redo operations, respectively. In CodeForest,
all changes of settings of visual parameters are stored in the undo
list. An undo operation cancels the current settings of visual pa-
rameters and recalls their settings used immediately before. The
canceled settings are stored in the redo list and can be recalled by a
redo operation.

A user can restore any visual representation appearing in the past
by double-clicking one of actions except for undo/redo operations.
He/she achieves this restoration without troublesome memorization
of settings of visual parameters and re-selection of them.

3. RELATED WORK
Investigating a human task for program comprehension, it is ob-

Figure 4: Interaction view of CodeForest.

vious that the task contains a number of iterations of trial-and-error
in his/her cognitive process. For example, Brooks claimed that pro-
gram understanding involves hypothesis generation based on pro-
grammer’s knowledge and verification process that begins with a
primary hypothesis [3]. Moreover, Letovsky found activities called
inquiries in programmers’ cognitive processes and their repetitions
in his empirical study [7]. An inquiry consists of asking a question,
conjecturing an answer to the question, and searching to verify the
answer. Both the researches reveal that there exists co-evolution
of questions about comprehension targets and answers to the ques-
tions. Program comprehension process is performed iteratively and
incrementally. The changes of understanding level or the results
of understanding induce the changes of understanding targets and
strategies. Our idea originates from these studies.

The features embedded in CodeForest are not completely novel.
Instead, they were inspired by the concepts of the Just in Time
Comprehension (JITC) [10], the Integrated Metamodel [13], and
the Reverse Engineering Notebook [17]. Singer et al. pointed out
that program comprehension tools should provide capabilities to
keep track of exploration sessions and allow the navigation of a
persistent history. They observed users working on multiple prob-
lems over a span of many days and losing information the users
had previously found [10]. Mayrhauser and Vans claimed that pro-
grammers use an as-needed rather than a systematic strategy for un-
derstanding code in an opportunistic understanding process. They
also argued that comprehension tools should formulate and keep
track of hypothesis, representation of domain knowledge and spe-
cialized domain schema, cognition strategies, and analysis of hy-
pothesis failure [13]. Wong claimed that the intended use of the
Reverse Engineering Notebook can support continuous program
understanding, which enables tool integration with respect to three
dimensions: data, control, and presentation [17].

4. CONCLUSION
We expect that CodeForest will facilitate program comprehen-

sion tasks using source code visualization. However, we currently
have no evidence for the benefits of the use of CodeForest dur-
ing program comprehension. To check if it can reduce program
comprehension effort, we must make several experiments with it.
Moreover, the implementation of CodeForest would need improve-
ment of user interface based on the experimental results.

We will also tackle refinement of the currently defined metrics
and consideration of a mechanism that enables a user to customize
them and add new metrics. The idea of normalizing the scaling fac-
tor of each metric, which was implemented in EvoSpace [1], would
be useful for the consideration. A mechanism handling memos and
interactions of multiple users is a significant issue.

Acknowledgment
The authors would like to thank Daiki Todoroki who engaged the
initial implementation of CodeForest. This work was partially spon-
sored by the Grant-in-Aid for Scientific Research (C) (24500050)
from the Japan Society for the Promotion of Science (JSPS).

5. REFERENCES
[1] S. Alam, S. Boccuzzo, R. Wettel, P. Dugerdil, H. Gall, and

M. Lanza. EvoSpaces - multi-dimensional navigation spaces
for software evolution. In Human Machine Interaction,
volume 5440 of LNCS, pages 167–192. Springer, 2009.

[2] G. Balogh and Á. Beszédes. CodeMetropolis - code
visualisation in MineCraft. In SCAM’13, pages 136–141,
2013.

[3] R. Brooks. Towards a theory of the comprehension of
computer programs. Int’l J. Man-Machine Studies,
18(6):543–554, 1983.

[4] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Managerial
use of metrics for object-oriented software: An exploratory
analysis. IEEE Trans. Softw. Eng., 24(8):629–639, 1998.

[5] S. Diehl. Software Visualization: Visualizing the Structure,
Behaviour, and Evolution of Software. Springer, 2007.

[6] R. Koschke. Software visualization in software maintenance,
reverse engineering, and re-engineering: A research survey.
Journal of Software Maintenance, 15(2):87–109, 2003.

[7] S. Letovsky. Cognitive processes in program comprehension.
Journal of Systems and Software, 7(4):325–339, 1987.

[8] J. I. Maletic, A. Marcus, and L. Feng. Source viewer 3D
(Sv3D): A framework for software visualization. In ICSE’03,
pages 812–813, 2003.

[9] T. J. McCabe. A complexity measure. IEEE Trans. Softw.
Eng., 2(4):308–320, 1976.

[10] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An
examination of software engineering work practices. In
CASCON’97, pages 209–223, 1997.

[11] M.-A. Storey. Theories, tools and research methods in
program comprehension: past, present and future. Software
Quality Journal, 14(3):187–208, 2006.

[12] M.-A. Storey, K. Wong, F. D. Fracchia, and H. A. Müller. On
integrating visualization techniques for effective software
exploration. In InfoVis’97, pages 38–45, 1997.

[13] A. von Mayrhauser and A. M. Vans. From code
understanding needs to reverse engineering tool capabilities.
In CASE’93, pages 230–239, 1993.

[14] A. von Mayrhauser and A. M. Vans. Program comprehension
during software maintenance and evolution. IEEE Computer,
28(8):44–55, 1995.

[15] R. Wettel and M. Lanza. Program comprehension through
software habitability. In ICPC’07, pages 231–240, 2007.

[16] R. Wettel, M. Lanza, and R. Robbes. Software systems as
cities: A controlled experiment. In ICSE’11, pages 551–560,
2011.

[17] K. Wong. The Reverse Engineering Notebook. PhD thesis,
Univ. of Victoria, 1999.

Figure A.1: Screenshot of visualization along with the memo view and the interaction view.

APPENDIX
A. ADDITIONAL SCREENSHOT

Fig. A.1 shows a screenshot of visualization along with the memo
view and the interaction view instead of the tree view and the prop-
erties view shown in Fig. 1.

B. WEBSITE
The demonstration video of CodeForest can be available from:

http://www.fse.cs.ritsumei.ac.jp/codeforest/.

Moreover, the implementation will be available from the above
website.

C. REQUIRED MODULES
CodeForest is a plug-in for Eclipse. The following modules are

required for its execution.

• Java SE 7

• Eclipse 4.3
http://www.eclipse.org/

• JOGL 2.1.4
http://jogamp.org/jogl/www/

• Java3D 1.6.0 (pre9)
http://jogamp.org/deployment/java3d/

• Jxplatform
https://github.com/katsuhisamaruyama/jxplatform

JOGL is a Java wrapper for the graphics library OpenGL and
Java3D provides high-level constructs for creating, rendering, and
manipulating a 3D scene graph.

Jxplatform is a tool platform that provides programmer-friendly
APIs wrapping AST information provided by Eclipse JDT.

