
Supporting Merge Conflict Resolution by Using Fine-Grained Code Change History

Yuichi Nishimura
Graduate School of Information Science and Engineering

Ritsumeikan University, Japan
nishimura y@fse.cs.ritsumei.ac.jp

Katsuhisa Maruyama
Department of Computer Science
Ritsumeikan University, Japan

maru@cs.ritsumei.ac.jp

Abstract—Modern version control systems facilitate concur-
rent work in software development by providing a mechanism
to merge revisions that are independently modified by mul-
tiple programmers. However, merge conflicts might emerge
due to concurrent modifications, and their resolution might
require the programmers to scrutinize every modification in
the revisions. This paper presents a tool that can alleviate
this cumbersome task of merging conflicting revisions. Our
tool exploits the fine-grained edit operation history of Java
source code and extracts only the edit operations that affect
the revision of a particular class member. By just replaying the
extracted edit operations, it helps programmers detect merge
conflicts between class members within the two revisions and
understand the modifications of the conflicting class members.
Moreover, it can artificially merge two snapshots that appear
during the evolution of the two revisions and show the
programmers a unique artificial snapshot that is consistent
with both the merged snapshots. By replaying the fine-grained
edits that cause merge conflicts and showing the apparent
snapshots with no conflicts as hints of the merged revision,
the tool reduces the burden of inspecting the code changes
behind the conflicts and reconciling the conflicting revisions.

Keywords-version control; merge conflicts; distributed soft-
ware development; code changes;

I. INTRODUCTION

Efficient coordination of multiple programmers is impor-
tant for effective software development [1]. Since version
control systems (e.g., Git and Subversion) support such
coordination, their use has become popular in modern soft-
ware development. Programmers can work on their own
workspaces (or repositories) and produce the revisions of
their program code in parallel [2]. However, the conflicts
among the multiple revisions modified in these independent
workspaces might hamper the success of such collaborative
development, since different programmers do not know the
modifications of others.

Several tools implementing conflict awareness and ad-
vanced conflict detection have been proposed to improve
traditional version control systems, and their features have
been summarized [3]. Whether real-time or event-based
(saving or committing), these tools argue that the early
detection of merge conflicts can prevent conflict resolutions
from escalating. Although this claim is reasonable, do pro-
grammers really need additional support? We believe that
they not only must know what code fragments (or program

elements) are causing merge conflicts but they also have to
understand how these code fragments have been changed in
the past.

Our approach believes that information about the fine-
grained code changes behind merge conflicts are useful for
reconciling them. Consider, for example, two code frag-
ments, which are causing a merge conflict, were indepen-
dently modified by a programmer who will eventually merge
the conflicting fragments and her co-worker. If she knows
that the changes related to the conflicting code fragments
made by her include those made by the co-worker, she might
be able to easily or quickly decide on a merging policy; her
decision might depend on whether the changes were made
at the early or the late stage of his revision work.

This paper proposes a tool called MergeHelper, which
exploits the edit operation history of the source code to
support the resolution of merge conflicts. In this tool, the
edit operations represent fine-grained code changes that are
made by a programmer on Eclipse’s Java editor. The edit
operations are automatically recorded by ChangeTracker [4],
which is embedded in MergeHelper. EGit (Eclipse’s Git)
stores them in a master repository with the changed code
when committing the code. Every snapshot of the source
code during its evolution can be restored from both the
initial (or previous) snapshot and the edit operations that
were applied to it.

To detect merge conflicts and uncover the code changes
behind them, MergeHelper employs operation history slic-
ing [5], which extracts only the edit operations that affect
the revision of a particular class member from the operation
history. It identifies the conflicting class members within
the two revisions to be merged based on their operation
history slices and allows programmers to replay only the edit
operations in the slices. In general, the resolution of conflicts
requires a deep inspection of the conflicting code fragments
and starts with a sufficient understanding of them. Replaying
the edit operations related to the conflicts can simplify this
time-consuming work. Hattori et. al. demonstrated that the
chronological replaying of fine-grained code changes helps
programmers find answers to questions related to software
evolution [6]. Furthermore, the adoption of operation history
slicing is expected to reduce the burden of the inspection
work, since the edit operations that are unrelated to the



Figure 1. Merging the independently evolved revisions.

conflicts are excluded from the replay.
MergeHelper also employs a mechanism that artificially

merges two snapshots appearing during the evolution of the
source code in the revisions to be merged. This mechanism
allows a programmer to see a unique snapshot that is con-
sistent with both merged snapshots. This apparent snapshot
might suggest the resolution of the emerging merge conflicts.

The main contribution of this paper is to present a running
implementation of a tool that exploits fine-grained code
changes to support the resolution of merge conflicts. This
tool also promotes the fusion of conflict detection and
program comprehension tools.

II. MOTIVATING EXAMPLE

To illustrate the merge conflicts that we tackled, we show
an example in Fig. 1. Suppose that Mario and Luigi are co-
workers who share the master repository using Git, which
stores the base file of the Java source code (simply called
Base). Mario and Luige pull (or fetch) changes from the
master repository. Both M0 and L0, which are the clones of
Base, are stored in their respective local repositories at the
beginning. Mn or Ln indicates a snapshot of the source code
that is generated immediately after edit operation n (> 0)
was applied to its previous snapshot, Mn−1 or Ln−1. These
snapshots were committed or uncommitted in the local
repositories. In Fig. 1, the underlined parts were modified
in Mario and Luigi’s repositories.

Mario performed these four tasks in the following order:
m1) He rewrote the contents of the body of method

getFullName().
m2) He deleted the entire code at the first line of method

spendYear().

m3) He inserted “year++;” at the last line of
spendYear().

m4) He modified “year” into “year + 1” in the
conditional expression of the if-statement within
spendYear().

After the four tasks, consisting of 32 edit operations,
Mario successfully pushed the changes (M32) in his local
repository to the master one without any merge conflicts.

Around the same time, Luigi also performed theses five
tasks in the following order:

l1) He added a new method toString().
l2) He performed the same task as m4.
l3) He performed the same task as m3.
l4) He performed the same task as m2.
l5) He rewrote the contents of the body of spendYear()

by introducing local variable tmpYear.
After the five tasks, consisting of 54 edit operations, Luigi

pushed the changes (L54) in his local repository to the
master one. Unfortunately, this push failed since Mario’s
changes were already merged in the master repository and
are now inconsistent with Luigi’s. In the example, both
MergeHelper and Git report the conflict that arises from
merging the changes with respect to spendYear() within
class Student of M32 and L54. The changes with respect to
getFullName() and toString() caused no merge con-
flicts. If Luigi wants a successful push, he has to resolve this
conflict by manually editing the conflicting code fragments.

III. TOOL IMPLEMENTATION

MergeHelper only deals with direct conflicts (also known
as syntactic conflicts) based on the class members within



parseable Java programs, although several types of merge
conflicts [7] emerge in realistic development. Direct conflicts
arise when two programmers edit the same code fragment
in different ways. MergeHelper detects them between class
members (methods or fields) with the same name (the
combination of a method or field name and its class name)
in the two revisions. Unfortunately, precise detection is
impossible if the name (or the signature) of a class member
is changed. We ignore indirect conflicts (also known as
semantic conflicts) that might cause unwanted behavior or
the test failure of the code resulting from the merge.

A. Conflict Detection

To detect merge conflicts, MergeHelper adopts operation
history slicing [5]. An operation history slice (or simply
a slice) is a chronological sequence of the extracted edit
operations. The edit operations include manual typing (in-
sertion, deletion, and replacement of text), clipboard editing
(copying, cutting, and pasting text), undo/redo actions, and
code changes by automatic transformations (code comple-
tion, quick fix, formatting, and refactoring).

The detecting procedure consists of the following steps:
1) It collects all the edit operations that were performed

during the independent evolution of the two revisions
to be merged. Each evolution line is called a branch.

2) To find the class members that cause merge conflicts,
it selects two class members, c1 and c2, with the same
name (not the method signature to cope with signature
changes), each of which appears in the last snapshot
of each branch, b1 or b2.

3) If not both slices S(b1, c1) and S(b2, c2) are empty
sequences, a merge conflict arises from the code
changes of the c1 of b1 and the c2 of b2.

In the example shown in Section II, fifteen slices were
extracted from both branches M and L. Four slices are
not empty: S(M, getFullName()), S(M, spendYear()),
S(L, toString()), and S(L, spendYear()). As a result,
spendYear() within M32 and L54 caused a merge conflict.

B. Artificial Merge

To provide hints for the resolution of merge conflicts,
MergeHelper generates a virtual snapshot of the source code
by artificially merging two snapshots that appeared during
the past evolution of the two revisions. This artificial merge
should be performed on demand and restored for every
snapshot by the application of each edit operation, which
resembles pseudo merges in previous work [1], [8].

The artificially merging procedure consists of the follow-
ing steps:

1) It selects the first edit operation in each slice S(b, c)
for class member c in branch b that causes a merge
conflict and finds snapshot s that existed immediately
before the application of this edit operation. Then it

Figure 2. Screenshot of MergeHelper.

collects set of snapshots N(b, c), consisting of s and
its subsequent snapshots.

2) It selects two snapshots, s1 of branch b1 and s2
of branch b2, from among snapshot sets N(b1, c1),
which corresponds to S(b1, c1), and N(b2, c2), which
corresponds to S(b2, c2). c1 or c2 is the conflicting
class member within s1 or s2.

3) If the contents of c1 and c2 are the same, (s1, s2) is
a candidate pair of the snapshots that will be merged.

4) It checks whether any merge conflicts have arisen for
each of the candidate pairs using the conflict detection
procedure described in Section III-A. If no conflicts
are detected with respect to other class members
within snapshots s1 and s2 of (s1, s2), these snapshots
can be artificially merged.

In the example shown in Section II, since the contents
of spendYear() of M32 and L26 are identical (Fig. 1)
by chance, these snapshots cause no conflicts. Thus, M32

and L26 are artificially merged and the resulting snapshot is
presented to the programmer. In realistic development, the
opportunities for this artificial merge might be scant, except
that the same bug fix is performed.

C. Replay Code Changes

With MergeHelper, a programmer (a tool user) can easily
replay the edit operations related to the detected merge
conflicts and obtain a virtual snapshot resulting from the
artificial merge. Fig. 2 shows a screenshot that consists
of four parts: a package explorer 1©, an edit operation
viewer 2©, replay buttons 3©, and a source code viewer 4©.

The package explorer presents information about the
branches and packages containing source files to be merged.
The source files that cause merge conflicts are displayed
in black and those that are unrelated to the conflicts are
displayed in gray. In Fig. 2, the conflicting source file
Student.java of Luigi’s branch is specified.



The edit operation viewer chronologically lists all the
edit operations that were performed during the evolution
of the specified source file. The resulting snapshots of the
artificial merge appear among the edit operations. To see any
snapshot that has been restored from the edit operations, a
programmer can directly specify the edit operation of interest
on this viewer or indirectly specify it by pushing the replay
buttons at the top of the package explorer. Moreover, all the
edit operations can be selected that are related to one or any
combination of the conflicting class members at once using
the menu bar located just above this viewer. For example,
when a programmer selects spendYear() as the conflicting
class member on the menu bar, the check boxes of all the
edit operations related to this class member are automatically
marked. A programmer can also freely mark and unmark the
check boxes of the edit operations.

The replay buttons allow programmers to forward and
backward replay the edit operations on the list one by one
and replay only the marked edit operations. The source
code viewer displays snapshots of the source code that
exists immediately after the application of the specified
edit operation and the resulting source code of the artificial
merge.

Programmers can see how the conflicting class members
were changed in the past by forward replaying, backward
replaying, fast-forwarding, and rewinding the edit operations
as if watching an animated movie. This replaying helps
answer questions about when the merge conflicts actually
arose in the past, what code changes actually caused them,
and what code changes were performed before or after their
occurrence. Therefore, MergeHelper is useful for resolving
merge conflicts.

IV. RELATED WORK

A number of merge approaches have been proposed [7].
Several tools aim for the early detection of merge con-
flicts by promoting real-time awareness (e.g., Palantı́r [9],
CollabVS [10], and Syde [11]), by introducing continuous
merge (e.g., Crystal [1] and WeCode [8]), and by sharing
fine-grained code changes (e.g., CloudStudio [3]). Although
these tools do not emphasize the inspection of merge
conflicts, MergeHelper especially endeavors to reduce the
burden of such inspection by extracting only the fine-grained
code changes that might cause conflicts and replaying them.

MergeHelper adopts merge conflict detection based on
the hybrid use of the structure of program elements (or
class members) and their textual contents (the unstructured
aspect). This concept seems to resemble a semi-structured
version control tool called FSTMERGE [12]. A large dif-
ference is that MergeHelper uses fine-grained code changes
to inspect the emerging conflicts, but FSTMERGE does not
explicitly use such code changes to support inspections.

Note that MergeHelper never competes against the con-
ventional tools that detect merge conflicts. We believe that

the extension of its implementation is relatively feasible so
that it can resolve merge conflicts in cooperation with the
conventional tools.

V. CONCLUSION

The resolution of merge conflicts is problematic for
programmers. Our proposed MergeHelper allows them to
efficiently replay the fine-grained code changes related to
conflicting class members, which eases their burden. The
tool implementation will be available at:
http://www.fse.cs.ritsumei.ac.jp/mergehelper/.

MergeHelper’s ability should be improved. Unfortunately,
its current implementation can only deal with the merge
of two branches, since it can automatically neither record
the edit operations that achieve the manual merge of two
branches nor merge their edit operation histories. In other
words, it cannot deal with successive merges of more than
two branches. This might be a fatal drawback for realis-
tic development. To overcome this problem, our improved
version will employ an additional mechanism based on edit
history refactoring [13].

ACKNOWLEDGMENT

The authors would like to thank Shinpei Hayashi,
Takayuki Omori, and Tetsuo Kamina for their valuable
comments to our work. This work was partially sponsored by
the Grant-in-Aid for Scientific Research (15H02685) from
the Japan Society for the Promotion of Science (JSPS).

REFERENCES

[1] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in Proc. ESEC/FSE ’11, 2011, pp. 168–
178.

[2] B. O’Sullivan, “Making sense of revision-control systems,” CACM,
vol. 52, no. 9, pp. 56–62, 2009.

[3] H.-C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Unifying con-
figuration management with merge conflict detection and awareness
systems,” in Proc. ASWEC ’13, 2013, pp. 201–210.

[4] “ChangeTracker,” https://github.com/katsuhisamaruyama/changetracker.
[5] K. Maruyama, E. Kitsu, T. Omori, and S. Hayashi, “Slicing and

replaying code change history,” in Proc. ASE ’12, 2012, pp. 246–
249.

[6] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu, “Software
evolution comprehension: Replay to the rescue,” in Proc. ICPC ’11,
2011, pp. 161–170.

[7] T. Mens, “A state-of-the-art survey on software merging,” IEEE TSE,
vol. 28, no. 5, pp. 449–462, 2002.

[8] M. L. G. aes and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proc. ICSE ’12, 2012, pp. 342–352.

[9] A. Sarma, G. Bortis, and A. van der Hoek, “Towards supporting
awareness of indirect conflicts across software configuration man-
agement workspaces,” in Proc. ASE ’07, 2007, pp. 94–103.

[10] R. Hegde and P. Dewan, “Connecting programming environments to
support ad-hoc collaboration,” in Proc. ASE ’08, 2008, pp. 178–187.

[11] L. Hattori and M. Lanza, “Syde: A tool for collaborative software
development,” in Proc. ICSE ’10, 2010, pp. 235–238.

[12] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured merge: Rethinking merge in revision control sys-
tems,” in Proc. ESEC/FSE ’11, 2011, pp. 190–200.

[13] S. Hayashi, D. Hoshino, J. Matsuda, M. Saeki, T. Omori, and
K. Maruyama, “Historef: A tool for edit history refactoring,” in Proc.
SANER ’15, 2015, pp. 469–473.


