
ChangeMacroRecorder: Recording
Fine-Grained Textual Changes of Source Code

Katsuhisa Maruyama
Ritsumeikan University, Japan

maru@cs.ritsumei.ac.jp

Shinpei Hayashi
Tokyo Institute of Technology, Japan

hayashi@c.titech.ac.jp

Takayuki Omori
Ritsumeikan University, Japan

tomori@is.ritsumei.ac.jp

Abstract—Recording code changes comes to be well recognized
as an effective means for understanding the evolution of existing
programs and making their future changes efficient. Although
fine-grained textual changes of source code are worth leveraging
in various situations, there is no satisfactory tool that records
such changes. This paper proposes a yet another tool, called
ChangeMacroRecorder, which automatically records all textual
changes of source code while a programmer writes and modifies it
on the Eclipse’s Java editor. Its capability has been improved with
respect to both the accuracy of its recording and the convenience
for its use. Tool developers can easily and cheaply create their
new applications that utilize recorded changes by embedding our
proposed recording tool into them.

Index Terms—Fine-grained changes, change recording, inte-
grated development environments

I. INTRODUCTION

Software evolution is inevitable to keep up with an ever-
changing context where it is managed and maintained [1].
To keep track of the fine-grained evolution of source code,
commit-based versioning systems are unsatisfactory since
they store the limited information into their repositories. To
overcome this dissatisfaction, change recording (or logging)
approaches obtain the details of changes that show what
actually happened [2] although code changes are overlapped or
tangled [3], [4]. Therefore, there are currently several change
recording tools including SpyWare [5], Syde [6], ChEOPS [7],
ChEOPSJ [8], OperationRecorder [9], Fluorite [10], and Cod-
ingTracker [3].

Among these tools, OperationRecorder and Fluorite attain
the recordings of changes with finer levels of granularity
by keeping track of modifications and updates of source
code text on integrated development environments (IDEs).
Textual changes are represented by the addition, deletion, and
replacement of a text string. Here, we would emphasize that
textual changes are versatile in supporting various kinds of
programming activities since text is free from the successful
build of an abstract syntax tree (AST) or other models.
Moreover, changes of source code entities or AST nodes can
be later inferred from the textual changes [11].

This paper proposes ChangeMacroRecorder (abbreviated as
CMR). It is an Eclipse plugin that automatically records fine-
grained textual changes of source code and actions involving
those changes while programmers (developers or maintainers)
write and modify their source code. Recorded textual changes
and actions constitute a series of change macros (hereafter

simply called macros). CMR is a yet another tool that improves
the capability with respect to both the accuracy of recording
textual changes and the convenience for using them.

Using CMR, tool developers such as tool vendors or re-
searchers would be able to easily and cheaply create their
new applications that leverage (e.g., analyze and visualize)
fine-grained code changes. A remarkable application is a
postponable refactoring tool [12], which allows a programmer
to suspend the execution of an automatic refactoring if its
preconditions are not satisfied and to restart the suspended
refactoring once all the preconditions are satisfied. It embeds
CMR to capture textual changes related to code fragments that
might be affected by the suspended refactoring.

II. MOTIVATION

Although OperationRecorder and Fluorite are currently
available, they are both designed to simply record textual
changes performed on the Eclipse’s Java editor and their
related events. Therefore, their capabilities are unsatisfactory
from two viewpoints of the accuracy and convenience of
recorded textual changes. Using an example shown in Fig-
ure 1, which illustrates a series of textual changes and their
corresponding macros recorded by CMR, we will explain
two drawbacks that cause the above dissatisfaction. A macro
(represented by mi) corresponds to a unit of recorded textual
change and stores information on the change. The details of
macros will be described in Section III-A.

A. Accuracy of Recording

OperationRecorder essentially obtains edit operations from
the undo history of Eclipse. This history often loses textual
changes that are distributed to multiple files. Fluorite logs doc-
ument change events by using the built-in document listeners
of Eclipse. These listeners capture events occurring in files
that have been already opened on the editor, but exclude ones
in not-opened files. Consequently, textual changes that both
the tools can record are inaccurate.

In the example of code edit shown in Figure 1(a), the
programmer first opened file P.java declaring the class P
and inserted the text “int efg = 0;” into the body of the
method abc(). The file open action was recorded as m1

and m2, and the text insertion and its related actions were
recorded as m3∼m16. Here, mi∼mj denotes every macro
sandwiched between mi and mj . Then, she changed the name

public class P {

public void abc() {
}

}

public class Q {

public void m() {
P p = new P();
p.abc();

}
}

m1

… …

m3 〜m16 m2 m17 〜m28

m29 〜m32

m33 m34

…

public class P {

public void abc() {
int efg = 0;

}
}

[Already-opened]

[Not-opened]

Insert
text

: Recorded change macro that represents textual changes

Open
file

Rename method
refactoring

m1: {FileMacro} 2018/01/10 13:36:20.035 OPENED PATH=P.java
m2: {FileMacro} 2018/01/10 13:36:20.399 ACTIVATED PATH=P.java

m3: {TriggerMacro} 2018/01/10 13:36:24.310 CURSOR_CHANGE PATH=P.java timing=[INSTANT]
m4: {DocumentMacro} 2018/01/10 13:36:26.547 EDIT PATH=P.java offset=39 ins=[~] del=[]
m5: {DocumentMacro} 2018/01/10 13:36:27.868 EDIT PATH=P.java offset=42 ins=[i] del=[]
m6: {DocumentMacro} 2018/01/10 13:36:28.075 EDIT PATH=P.java offset=43 ins=[n] del=[]
m7: {DocumentMacro} 2018/01/10 13:36:28.515 EDIT PATH=P.java offset=44 ins=[t] del=[]
m8: {DocumentMacro} 2018/01/10 13:36:28.642 EDIT PATH=P.java offset=45 ins=[] del=[]
…
m15: {DocumentMacro} 2018/01/10 13:36:31.787 EDIT PATH=P.java offset=52 ins=[0] del=[]
m16: {DocumentMacro} 2018/01/10 13:36:32.955 EDIT PATH=P.java offset=53 ins=[;] del=[]

m17: {TriggerMacro} 2018/01/10 13:36:39.366 CURSOR_CHANGE PATH=P.java timing=[INSTANT]
m18: {TriggerMacro} 2018/01/10 13:36:40.981 CURSOR_CHANGE PATH=P.java timing=[INSTANT]
m19: {CommandMacro} 2018/01/10 13:36:45.147 EXECUTION PATH=P.java command=[org.eclipse.jdt.ui.edit.text.java.rename.element]
m20: {TriggerMacro} 2018/01/10 13:36:45.149 REFACTORING PATH=P.java timing=[BEGIN]
m21: {DocumentMacro} 2018/01/10 13:36:47.420 EDIT PATH=P.java offset=32 ins=[x] del=[abc]
m22: {DocumentMacro} 2018/01/10 13:36:47.750 EDIT PATH=P.java offset=33 ins=[y] del=[]
m23: {DocumentMacro} 2018/01/10 13:36:48.093 EDIT PATH=P.java offset=34 ins=[z] del=[]
m24: {CancelMacro} 2018/01/10 13:36:50.314 UNDO PATH=P.java offset=33 ins=[] del=[yz]
m25: {CancelMacro} 2018/01/10 13:36:50.316 UNDO PATH=P.java offset=32 ins=[abc] del=[x]
m26: {RefactoringMacro} 2018/01/10 13:36:50.600 ABOUT_TO_PERFORM PATH=P.java name=[org.eclipse.jdt.ui.rename.method] range=[32-34]
m27: {TriggerMacro} 2018/01/10 13:36:50.601 REFACTORING PATH=P.java timing=[BEGIN]
m28: {DocumentMacro} 2018/01/10 13:36:50.603 EDIT PATH=P.java offset=32 ins=[xyz] del=[abc]

m29: {ResourceMacro} 2018/01/10 13:36:50.675 CHANGED PATH=Q.java target=[FILE]
m30: {FileMacro} 2018/01/10 13:36:50.676 CONTENT_CHANGED PATH=Q.java
m31: {DocumentMacro} 2018/01/10 13:36:50.678 AUTO_DIFF PATH=Q.java offset=59 ins=[xyz] del=[abc]
m32: {FileMacro} 2018/01/10 13:36:50.682 REFACTORED PATH=Q.java

m33: {TriggerMacro} 2018/01/10 13:36:50.687 REFACTORING PATH=P.java timing=[END]
m34: {RefactoringMacro} 2018/01/10 13:36:50.689 PERFORMED PATH=P.java name=[org.eclipse.jdt.ui.rename.method]

”PATH=P.java” means
path=[/A/src/P.java]
resource=[A/(default package)/P.java]
branch=[]

“PATH=Q.java” means
path=[/A/src/Q.java]
resource=[A/(default package)/Q.java]
branch=[]

”~” in text means
the carriage-return symbol

(a) Textual changes

(b) Change macros

public class P {

public void xyz() {
int efg = 0;

}
}

public class Q {

public void m() {
P p = new P();
p.xyz();

}
}

Fig. 1. Example of (a) textual changes actually performed and (b) their corresponding (raw) change macros recorded by CMR.

of abc() into xyz (m17∼m34) by activating an automatic
rename-method refactoring. Actually, she only both activated
the refactoring and replaced the string abc with the string
xyz in the inline dialog (m21∼m23). The refactoring module
behind the Eclipse’s editor found a reference to abc() within
the method m() of the class Q and updated it to refer xyz()
(m31). The attention point is that the file Q.java declaring Q
was not opened on at the execution of the rename refactoring.

Unfortunately, neither OperationRecorder nor Fluorite can
capture this textual change occurring in Q.java. In other
words, no edit operation or event log corresponding to m31

can be recorded. Moreover, existing tools excluding Coding-
Tracker are incompatible with textual changes performed on
the outside of their IDEs. In fact, CodingTracker can record
events for outside resource changes but does not output their
corresponding textual changes during the recording process.
Since the violation of the time-series consistency of recorded
textual changes hinders the comprehension of source code
evolution, tool developers would require change recording
tools to record textual changes with higher accuracy.

B. Convenience for Use

Existing change recording tools including Operation-
Recorder and Fluorite do not intend to facilitate the use of

recorded changes although some of them can simply amend
the changes. Therefore, tool developers must implement the
functionality of investigating recorded changes in their own
application tools. However, their tasks to classify, simplify, and
aggregate recorded changes are greatly difficult if the changes
do not contain information enough to be amended later. In
general, to classify and simplify textual changes based on the
contexts in which the changes occur, it is reasonable to record
the execution of various kinds of programmers’ and IDEs’
actions with clearly distinct forms. Moreover, the change
aggregation task needs to know the exact time of starting
and ending an action (e.g., refactoring or code completion)
involving multiple textual changes. The time of executing
an action (e.g., saving a file, deleting a project) might be
sometimes useful for determining the timing of analyzing
textual changes. Unfortunately, almost all the existing tools fall
short in presenting them without such convenient information.

For example, looking at the recorded macros shown in
Figure 1(b), m19, m26, and m34 indicate the activating, start-
ing, and ending a refactoring, respectively. Additionally, m20,
m27, and m33 were inserted at their adequate positions. These
macros are essential for determining that textual changes of
m28 and m31 were involved with the applied refactoring.
With respect to the simplification of macros, m21, m22, and

m23 are accordingly verbose since the textual changes of
these macros were undone by m24 and m25 in the duration
between the activating and starting points of the refactoring.
Tool developers would desire such information on the contexts
of textual changes, in addition to simple information on them.

Here, we do not believe that only presenting rich infor-
mation satisfies many tool developers. They also desire a
feasible implementation that simplifies and aggregates textual
changes, using the collected rich information. For example,
Evolizer [13] is a platform that introduces two metamodels to
ease development of change analysis tools. FeedBaG++ [14]
employs a platform that provides tooling around enriched
events. Unfortunately, there are seldom such tools for present-
ing powerful treatment for recorded textual changes.

Moreover, tool developers do not prefer the undue separa-
tion of textual changes. In Figure 1(b), the consecutively typed
characters “i”, “n”, “t” were separately recorded in m5, m6,
and m7, although the text “int” was a keyword in source
code. Since each character of an identifier or a keyword is too
fine-grained to be managed based on programmers’ intuitions,
compressing consecutive textual changes would be certainly
needed in most cases. To our knowledge, many of the existing
change recording tools present inelegant textual changes as-is.

III. IMPLEMENTATION

This section explains macros and significant improvements
made in the implementation of CMR.

A. Change Macros

To extract textual changes and detect their related actions,
CMR employs seven modules that implement their respec-
tive dedicated listeners (e.g., IDocumentListener and IRe-
sourceChangeListener) embedded in Eclipse. The extracted
textual changes and detected actions constitute nine kinds of
basic macros.

The first two macros directly update of source code text.
Each textual change (by typing text, cutting text, pasting
text, and activating the undo or redo action) is represented
by the insertion and/or deletion that made to source code.
DocumentMacro stores an inserted text, a deleted text, and
the offset (of the leftmost character) of the inserted or deleted
text in the source code. CancelMacro is always paired with
DocumentMacro. As described in Section II-B, a series of code
manipulations in a rename refactoring under the inline mode
causes the consistent result of source code but the recorded
textual changes seem to be verbose. To give the opportunity
of simplifying this verbosity, CMR introduces CancelMacro
that undoes previous DocumentMacro corresponding to a
programmer’s text input.

The remaining seven macros denote the occurrences of
programmers’ actions that might or might not involve textual
changes of the source code. CopyMacro stores a copied
text and its offset to recover the occurrences of copy-paste
actions although a copy action never changes source code
text. CommandMacro, CodeCompletionMacro, Refactor-
ingMacro, and GitMacro represent the execution of command

Fig. 2. Classes and interfaces related to change macros.

services (including cut, copy, and paste actions), code com-
pletion actions by content assist, refactoring actions, and Git
actions, respectively. ResourceMacro represents the property
change of resources (files, packages, and projects). FileMacro
stores source code text as needed when detecting the execution
of file operations (adding, removing, opening, closing, saving,
and activating), move and rename refactoring actions for files,
and Git actions for files.

TriggerMacro is a special macro that just indicates a trigger
to begin, end, or cancel pre-defined actions (refactoring, code
completion, undoing, and redoing, Git command) that might
cause composite changes. It also indicates a change of the
cursor location, which means the completion or interruption
of running actions and programmer’s editing activities. A
begin-end pair of TriggerMacro derives CompoundMacro
that composes textual changes that are simultaneously made
by the same action.

All eleven (nine plus additional two) kinds of macros store
common information on the time when a textual change or an
action was performed, the name of a changed or affected file,
and the names of a project, package, and Git branch related to
the file. Figure 2 depicts a class diagram containing classes that
implement the eleven macros. It also shows primary classes
and interfaces that provide the functionality of managing
the macros. Some non-essential attributes, operations, and
associations are omitted to simplify the diagram. Usage of
some classes and interfaces will be explained in Section IV.

B. Accurate Recording of Change Macros

As shown in Figure 2, the actions of DocumentMacro are di-
vided into eight kinds, which are defined in the enum class Ac-

m’1 (m1): {FileMacro} 2018/01/10	13:36:20.035 OPENED	PATH=P.java
m’2 (m2): {FileMacro} 2018/01/10	13:36:20.399 ACTIVATED	PATH=P.java
m’4 (m4): {DocumentMacro} 2018/01/10	13:36:26.547 EDIT PATH=P.java	offset=39	ins=[~]	del=[]
m’5 -7: {DocumentMacro} 2018/01/10	13:36:27.868 EDIT PATH=P.java	offset=42	ins=[int]	 del=[]
m’8 (m8):	 {DocumentMacro} 2018/01/10	13:36:28.642 EDIT PATH=P.java	offset=45	ins=[]	del=[]
m’9 -11: {DocumentMacro} 2018/01/10	13:36:29.082 EDIT PATH=P.java	offset=46	ins=[efg]	del=[]
m’12 (m12):	{DocumentMacro} 2018/01/10	13:36:30.747 EDIT PATH=P.java	offset=49	ins=[]	del=[]
m’13 (m13):	{DocumentMacro} 2018/01/10	13:36:31.139 EDIT PATH=P.java	offset=50	ins=[=]	del=[]
m’14 (m14):	{DocumentMacro} 2018/01/10	13:36:31.515 EDIT PATH=P.java	offset=51	ins=[]	del=[]
m’15 (m15):	{DocumentMacro} 2018/01/10	13:36:31.787 EDIT PATH=P.java	offset=52	ins=[0]	del=[]
m’16 (m16): {DocumentMacro} 2018/01/10	13:36:32.955 EDIT PATH=P.java	offset=53	ins=[;]	del=[]
m’19 (m19): {CommandMacro} 2018/01/10	13:36:45.147 EXECUTION	PATH=P.java	command=[org.eclipse.jdt.ui.edit.text.java.rename.element]

m’20: {CompoundMacro} 2018/01/10	13:36:45.149 REFACTORING	commandId=[org.eclipse.jdt.ui.edit.text.java.rename.element]	 num=[6]
m’26 (m26): !{RefactoringMacro} 2018/01/10	13:36:50.600 ABOUT_TO_PERFORM	PATH=P.java	name=[org.eclipse.jdt.ui.rename.method]	range=[32-34]
m’28 (m28): !{DocumentMacro} 2018/01/10	13:36:50.603 EDIT PATH=P.java	offset=32	ins=[xyz]	del=[abc]
m’29 (m29): !{ResourceMacro} 2018/01/10	13:36:50.675 CHANGED	 PATH=P.java	target=[FILE]
m’30 (m30): !{FileMacro} 2018/01/10	13:36:50.676 CONTENT_CHANGED	 PATH=P.java
m’31 (m31): !{DocumentMacro} 2018/01/10	13:36:50.678 AUTO_DIFF PATH=P.java	offset=59	ins=[xyz]	del=[abc]
m’32 (m32): !{FileMacro} 2018/01/10	13:36:50.682 REFACTORED	PATH=P.java	

m’34 (m34): {RefactoringMacro} 2018/01/10	13:36:50.689 PERFORMED	PATH=P.java	name=[org.eclipse.jdt.ui.rename.method]

Compressed	m5 〜m7

Compressed	m9 〜m11

Compounded	m20 〜m32

Fig. 3. Treated change macros that CMR generates.

tion dangling the class DocumentMacro. The constants EDIT,
CUT, PASTE, UNDO, REDO, and COMPLETE simply indicate
editing, cutting, pasting, undoing, redoing, code completion,
respectively. Whereas these six actions are all usual in normal
code editing, the two remaining constants AUTO_DIFF and
IRREGULAR_DIFF correspond to special actions that attain the
accurate recording of textual changes.

We consider that the conventional simple change recording
does not address two possible cases that might decrease
the accuracy of recording. The first case is that particular
refactorings update not only the content of a file that has been
already opened but that of a file that has not been opened on
the editor. In this case, conventional change recording tools
often overlook indirect textual changes in not-opened files. To
overcome this drawback, CMR monitors the local history of
a not-opened file and checks if its content is updated during
the execution of refactoring. If any update occurs, it calculates
textual differences between the contents of the file before and
after the execution of refactoring by using diff utility. Each
of the differences is transformed into either an inserted text
or a deleted text. CMR automatically records DocumentMacro
with AUTO_DIFF, which stores the text and its offset. In the
example shown in Figure 1(a), m31 corresponds to this macro
since the file Q.java was not opened at the execution of the
applied rename refactoring.

The other case is that almost all conventional change
recording tools often ignore unexpected code manipulation
that is performed on the outside of them or changes that are
incorrectly captured due to the limitations of their recording
implementations. Some of the tools take the snapshots of
files at a specific time (e.g., file saving), they cannot always
preserve the consistency of recorded textual changes. To record
consistent textual changes in this case, CMR temporarily
generates a text by applying a currently recorded macro to the
previous content of a changed file, and checks the discrepancy
between the generated text and the current content of the file.
If there is any irregular discrepancy detected, CMR automati-
cally records DocumentMacro with IRREGULAR_DIFF, which
contains textual differences to reconcile the discrepancy.

C. Convenient Use of Change Macros

A human-understandable representation of changes is con-
venient for tool developers who exploit the changes. To this
end, CMR performs the treatment of raw macros through three
processes: aggregating macros, compressing textual changes,
and simplifying verbose ones. Figure 3 shows a series of
macros that was obtained by applying these treatment pro-
cesses to the untreated raw macros shown in Figure 1(b).
Whereas the symbol m indicates one of the raw macros, m′

with the prime mark indicates one of the treated macros. Two
change macros with the same index number store the same
information. A sequence of treated change macros includes
CompoundMacro but excludes both CancelMacro and Trig-
gerMacro.

As mentioned in Section III-A, a begin-end pair of Trig-
gerMacro derives CompoundMacro. In Figure 1(b), m20 and
m33 compose a begin-end pair of the applied refactoring,
and thus CMR aggregated macros sandwiched between them.
Finally, CompoundMacro m′20 encloses the six macros with
the exclamation mark through the other two treatment process,
as shown in Figure 3. Note that the occurrences of Trigger-
Macro are not necessarily paired. In the example shown in
Figure 1(b), m27 and m33 become unpaired since CMR skips
m27 to detect the outermost begin-end. If it detects a begin-
cancel pair of TriggerMacro, it aborts a running aggregation
process and converts macros enclosed by TriggerMacro into
unenclosed ones. A similar aggregation process is performed
when any code is automatically completed.

To compress textual changes that are stored in different
DocumentMacro, CMR employs a delimiter-based compres-
sion strategy that relaxes “gluing” of CodingTracker since it
might be understandable and can be easily implemented. It
concatenates consecutive two texts if they contain no pre-
defined delimiter. The default delimiters are all characters
appearing in string “ \n\r,.;()[]{}” (means a space
character). Looking at m5∼m8 shown in Figure 1(b), neither
m5, m6, nor m7 stored one of the delimiters. Therefore,
all textual changes stored in these macros were compressed

(i.e., the strings “i”, “n”, and “t” were concatenated into
“int”). On the other hand, m8 was not combined with m7

since it stored the blank character. As a result, CMR generates
DocumentMacro m′5−7 storing the inserted text “int” and
m′8 storing the blank character. Here, tool developers can
freely customize delimiters, and can also replace the prepared
delimiter-based strategy with their own compression ones (e.g.,
time-period based compression of textual changes).

The simplification process is uncomplicated in the treatment
of textual changes. CancelMacro is exactly responsible for
canceling a verbose textual change and always appears in a
begin-end or begin-cancel pair of TriggerMacro. It removes
itself and its corresponding DocumentMacro from macros
that are enclosed in CompoundMacro. In Figure 1(b), for
example, m24 and m25 removed m21, m22, and m23 along
with themselves.

IV. USAGE

CMR is designed to be embedded into various application
tools that leverage fine-grained textual changes, and adopts
the event-listener model to notify the tools of recorded textual
changes. This section explains how to utilize four primary in-
terfaces IMacroRecorder, IMacroCompressor, IMacroListener,
and IMacroHandler shown in Figure 2. Hereafter, code that a
tool developer writes within her tool is called user code.

IMacroRecorder provides the functionality of managing the
macro recording. Its concrete instance can be obtained by
invoking the static method getInstance() of the class
MacroRecorder. The methods addMacroListener() and
removeMacroListener() of IMacroRecorder start and stop
sending macros to a receiver instance of a class implementing
IMacroListener, respectively. Once the user code registers or
unregisters the receiver instance, it becomes able or unable
to receive recorded macros. To customize delimiters, the
user code passes a string containing all delimiter characters
through the invocation to the method setDelimiters(). No
compression is performed if null is given. On the other hand,
the empty string denotes compression of all consecutive texts
not chopped by any action. Moreover, user code can entirely
replace a compression strategy of the class MacroCompressor
with another one. In this case, it registers an instance of a class
implementing the interface IMacroCompressor by invoking the
method setMacroCompressor().

To really receive macros, user code should prepare a
receiver instance of a class that implements the methods
rawMacroAdded() and macroAdded() of IMacroListener.
Whereas the former receives recorded macros as-is, the latter
receives treated ones. To be precise, CMR passes an instance
of the class MacroEvent that stores a macro either with or
without treatment, which can be distinguished based on its
type (GENERIC_MACRO or RAW_MACRO).

Besides the above basic usage, an extension point for
plug-ins is provided so that user code can easily register a
receiver instance if it must record the whole textual change
while Eclipse is running. In this case, the user code should
define a class for the receiver instance, which implements

the methods of IMacroHandler in addition to the methods of
IMacroListener. The tool developer specifies the receiver class
in the plug-in configuration file. To avoid this work, CMR
also provides a wizard that both creates a template of the
receiver class and registers it. The methods initialize()

and terminate() are invoked when Eclipse starts and stops,
respectively. The method recordingAllowed() determines
whether the change recording is allowed or not. A receiver in-
stance is successfully registered if true is returned, otherwise
it is never registered.

V. CONCLUSION

To promote the utilization of fine-grained textual changes
of source code, a tool developer would expect a tool that can
accurately record them and make them more convenient. Our
proposed CMR is a candidate for this tool. The source code of
its implementation is available at GitHub 1 with Eclipse Public
License 1.0 (EPL-1.0). Moreover, several screencast demon-
strations including the example of Figure 1 are presented at the
site. An immediate future work is to collect a large volume of
textual changes in real software development and maintenance
using CMR.

ACKNOWLEDGMENT

This work was sponsored by the Grant-in-Aid for Scientific
Research (15H02685, 15K15970, 15H02683, 26730042).

REFERENCES

[1] Meir M. Lehman. Programs, life cycles, and laws of software evolution.
Proc. IEEE, 68(9):1060–1076, 1980.

[2] Quinten David Soetens, Romain Robbes, and Serge Demeyer. Changes
as first-class citizens: A research perspective on modern software tooling.
ACM Computer Surveys, 50(2):18:1–18:38, 2017.

[3] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and
Danny Dig. Is it dangerous to use version control histories to study
source code evolution? In Proc. ECOOP ’12, pages 79–103, 2012.

[4] Kim Herzig and Andreas Zeller. The impact of tangled code changes.
In Proc. MSR ’13, pages 121–130, 2013.

[5] Romain Robbes and Michele Lanza. A change-based approach to
software evolution. Electronic Notes in Theoretical Computer Science,
166:93–109, 2007.

[6] Lile Hattori and Michele Lanza. Syde: a tool for collaborative software
development. In Proc. ICSE ’10, pages 235–238, 2010.

[7] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and
Theo D’Hondt. Change-oriented software engineering. In Proc. ICDL
’07, pages 3–24, 2007.

[8] Quinten D. Soetens and Serge Demeyer. ChEOPSJ: Change-based test
optimization. In Proc. CSMR ’12, pages 535–538, 2012.

[9] Takayuki Omori and Katsuhisa Maruyama. A change-aware develop-
ment environment by recording editing operations of source code. In
Proc. MSR ’08, pages 31–34, 2008.

[10] YoungSeok Yoon and Brad A. Myers. Capturing and analyzing low-
level events from the code editor. In Proc. PLATEAU ’11, pages 25–30,
2011.

[11] Katsuhisa Maruyama, Takayuki Omori, and Shinpei Hayashi. Slicing
fine-grained code change history. IEICE Trans. Inf. Syst., E99(3):671–
687, 2015.

[12] Katsuhisa Maruyama and Shinpei Hayashi. A tool supporting postpon-
able refactoring. In Proc. ICSE ’17 (Companion), pages 133–135, 2017.

[13] Harald C. Gall, Beat Fluri, and Martin Pinzger. Change analysis with
evolizer and changedistiller. IEEE Software, 26(1):26–33, 2009.

[14] Sebastian Proksch, Sarah Nadi, Sven Amann, and Mira Mezini. Enrich-
ing in-IDE process information with fine-grained source code history.
In Proc. SANER ’17, pages 250–260, 2017.

1https://github.com/katsuhisamaruyama/ChangeMacroRecorder

